Skip to main content
Log in

Using Different Spectroscopic Databases to Model the Transfer of Radiation in the Near-IR Range and Retrieve the Content of Methane in the Atmosphere

  • XX SYMPOSIUM ON HIGH-RESOLUTION MOLECULAR SPECTROSCOPY (HighRus-2023)
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Atmospheric solar spectra in the absorption lines of methane in the near-IR range are modeled and compared using spectra measured on a ground-based Fourier transform spectrometer with high spectral resolution under different atmospheric conditions. The content of methane in the atmospheric column is retrieved using different versions of spectroscopic databases HITRAN (2008, 2012, 2016, 2020), GEISA (2015, 2020), and ATM (2016, 2020) and the CH4 line list GOSAT2014. The RMS value averaged over 1346 spectra (the deviation of the calculated spectra from ones measured) is calculated for each spectroscopic base. The lowest RMS value is observed for results obtained with CH4 absorption lines from ATM2020, ATM2016, and HITRAN2008. Parameters of the CH4 absorption lines that introduce the greatest error into modeling radiative transfer in the atmosphere are revealed in the spectral range of 6000–6100 cm–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. Masson-Delmotte, P. Zhai, A. Pirani, et al., IPCC 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the 6th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, 2021). https://doi.org/10.1017/9781009157896

    Book  Google Scholar 

  2. P. Forster, V. Ramaswamy, P. Artaxo, et al., in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, 2007), Chap. 2.

    Google Scholar 

  3. M. J. Prather, C. D. Holmes, and J. Hsu, Geophys. Res. Lett. 39, L09803 (2012). https://doi.org/10.1029/2012GL051440

  4. G. Holl, K. A. Walker, S. Conway, et al., Atmos. Meas. Tech. 9, 1961 (2016). https://doi.org/10.5194/amt-9-1961-2016

    Article  CAS  Google Scholar 

  5. I. A. Vasilenko, S. A. Sadovnikov, and O. A. Romanovskii, Atmos. Oceanic Phys. 33, 415 (2020). https://doi.org/10.1134/S1024856020040181

    Article  CAS  Google Scholar 

  6. T. Yu. Chesnokova, A. V. Chentsov, N. V. Rokotyan, et al., J. Mol. Spectrosc. 327, 171 (2016). https://doi.org/10.1016/j.jms.2016.07.001

    Article  CAS  Google Scholar 

  7. T. Yu. Chesnokova, M. V. Makarova, A. V. Chentsov, et al., J. Quant. Spectrosc. Radiat. Transfer 254, 107187 (2020).

  8. L. S. Rothman, I. E. Gordon, A. Barbe, et al., J. Quant. Spectrosc. Radiat. Transfer 110, 533 (2009).

    Article  CAS  Google Scholar 

  9. L. S. Rothman, I. E. Gordon, Y. Babikov, et al., J. Quant. Spectrosc. Radiat. Transfer 130, 4 (2013).

    Article  CAS  Google Scholar 

  10. I. E. Gordon, L. S. Rothman, C. Hill, et al., J. Quant. Spectrosc. Radiat. Transfer 203, 3 (2017).

    Article  CAS  Google Scholar 

  11. I. E. Gordon, L. S. Rothman, R. J. Hargreaves, et al., J. Quant. Spectrosc. Radiat. Transfer 277, 10794 (2022).

    Article  Google Scholar 

  12. N. Jacquinet-Husson, R. Armante, N. A. Scott, et al., J. Mol. Spectrosc. 327, 31 (2016).

    Article  CAS  Google Scholar 

  13. T. Delahaye, R. Armante, N. A. Scott, et al., J. Mol. Spectrosc. 380, 111510 (2021). https://doi.org/10.1016/j.jms.2021.111510

  14. G. C. Toon, ATM Compilations from Geoffrey Toon (JPL). http://mark4sun.jpl.nasa.gov/toon/linelist/linelist.htm.

  15. G. C. Toon, J. F. Blavier, K. Sung, et al., J. Quant. Spectrosc. Radiat. Transfer 182, 324 (2016). https://doi.org/10.1016/j.jqsrt.2016.05.021

    Article  CAS  Google Scholar 

  16. A. V. Nikitin, O. M. Lyulin, S. N. Mikhailenko, et al., J. Quant. Spectrosc. Radiat. Transfer 154, 63 (2015). https://doi.org/10.1016/j.jqsrt.2014.12.003

    Article  CAS  Google Scholar 

  17. M. Birk, G. Wagner, J. Loos, et al., Technical Report, Scientific Exploitation of Operational Missions – Improved Atmospheric Spectroscopy Databases (2017). https://doi.org/10.5281/zenodo1009126

    Book  Google Scholar 

  18. A. Nikitin, A. Rodina, X. Thomas, et al., J. Quant. Spectrosc. Radiat. Transfer 253, 107061 (2020). https://doi.org/10.1016/j.jqsrt.2020.107061

  19. A. Predoi-Cross, M. Brawley-Tremblay, L. R. Brown, et al., J. Mol. Spectrosc. 236, 201 (2006). https://doi.org/10.1016/j.jms.2006.01.013

    Article  CAS  Google Scholar 

  20. V. Devi, D. C. Benner, K. Sung, et al., J. Quant. Spectrosc. Radiat. Transfer 177, 152 (2016). https://doi.org/10.1016/j.jqsrt.2015.12.009

    Article  CAS  Google Scholar 

  21. A. A. Mitsel, I. V. Ptashnik, K. M. Firsov, et al., Atmos. Ocean. Opt. 8, 847 (1995).

    Google Scholar 

  22. G. Anderson, S. Clough, F. Kneizys, et al., Environ. Res. Paper, No. 954, AFGL-TR-86-0110 (Hanscom AFB, MA, 1986).

    Google Scholar 

  23. K. Gribanov, J. Jouzel, V. Bastrikov, et al., Atmos. Chem. Phys. 14, 5943 (2014). https://doi.org/10.5194/acp-14-5943-2014

    Article  CAS  Google Scholar 

  24. E. Kalnay, M. Kanamitsu, R. Kistler, et al., Bull. Am. Meteorol. Soc. 77, 437 (1996).

    Article  Google Scholar 

  25. www.esrl.noaa.gov/psd/data/reanalysis/.

  26. M. Palm, in Proceedings of the SFIT4 Error Analysis Workshop, 2013.

  27. C. P. Rinsland, N. B. Jones, and B. J. Connor, et al., J. Geophys. Res. 103, 28197 (1998). https://doi.org/10.1029/98JD02515

    Article  CAS  Google Scholar 

  28. R. Armante, N. Scott, C. Crevoisier, et al., J. Quant. Spectrosc. Radiat. Transfer 327, 180 (2016).

    CAS  Google Scholar 

  29. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, Singapore, 2000).

    Book  Google Scholar 

  30. https://airs.jpl.nasa.gov/.

  31. https://giovanni.gsfc.nasa.gov/.

Download references

Funding

The research of T.Yu. Chesnokova and A.V. Chentsov was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences). The work of K.G. Gribanov, I.V. Zadvornykh, and V.I. Zakharov was supported by the RF Ministry of Higher Education and Science, project no. FEUZ-2024–0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Chesnokova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokova, T.Y., Chentsov, A.V., Gribanov, K.G. et al. Using Different Spectroscopic Databases to Model the Transfer of Radiation in the Near-IR Range and Retrieve the Content of Methane in the Atmosphere. Russ. J. Phys. Chem. (2024). https://doi.org/10.1134/S0036024424050091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036024424050091

Keywords:

Navigation