Skip to main content
Log in

Possibilities of Corona Electric Discharge for Deep Purification of Drinking Water from Phenol and Tetracycline

  • ELECTROCHEMISTRY. GENERATION AND STORAGE OF ENERGY FROM RENEWABLE SOURCES
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Here, we have studied the purification of water from phenol and tetracycline by oxidation with ozone and hydroxyl radicals generated in a corona electric discharge. Liquid circulation has been used to process large volumes. It has been established that tetracycline decomposes from a concentration of 11 mg/L to (1.7 ± 0.3) × 10−3 mg/L at a dose of 140 J/50 mL. Phenol decomposes more slowly, the oxidation rate decreases at low residual concentrations. The phenol concentration decreases from 13 mg/L to (27 ± 5) × 10−3 mg/L at a dose of 5 × 104 J/50 mL. The reasons for the strong decrease in the rate of phenol oxidation at low concentrations in the case of oxidation by hydroxyl radicals are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. S. Timofeeva and O. S. Gudilova, XXI Vek. Tekhnosf. Bezopasn. 6, 251 (2021).

    Google Scholar 

  2. A. K. Singh, L. Cheng, A. Hussain, and A. Maiti, Environ. Res. 26, 115678 (2023).

    Google Scholar 

  3. V. A. Terekhova, I. I. Rudneva, A. A. Poromov, et al., Voda: Khim. Ekol., Nos. 3–6, 92 (2019).

    Google Scholar 

  4. A. C. Faleye, A. A. Adegoke, K. Ramluckan, et al., J. Water Health 15, 982 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. S. G. Paramonov, D. D. Zelikova, L. V. Sklyarova, and I. M. Altukhova, Formuly Farmats. 4, 76 (2022).

    Google Scholar 

  6. N. S. Antropova, O. V. Ushakova, M. A. Vodyanova, and O. N. Savostikova, Ross. Zh. Vosstan. Med., No. 4, 36 (2020).

  7. N. Jendrzejewska and E. Karwowska, Water Sci. Technol. 77, 2320 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. C. X. Chen, A. Aris, E. L. Yong, and Z. Z. Noor, Environ. Sci. Pollut. Res. 29, 4787 (2022).

    Article  CAS  Google Scholar 

  9. P. T. Nguyen, H. T. Nguyen, U. N. P. Tran, and H. M. Bui, J. Chem. 2021, 9981738 (2021).

    Google Scholar 

  10. S. Umrantezcanun Eren Ocal and Ayse Gul, Int. J. Adv. Sci. Eng. Technol. 6, 2321 (2018).

    Google Scholar 

  11. L. Phoon, C. C. Ong, M. S. Mohamed, et al., J. Hazard. Mater. 400, 122961 (2020).

    Article  PubMed  Google Scholar 

  12. S. Adil, B. Maryam, E.-J. Kim, and N. Dulova, Environ. Res. 189, 109889 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. S. Das and S. Sengupta, Water Conserv. Sci. Eng. 8, 10 (2023).

    Article  Google Scholar 

  14. V. Abramov, A. Abramova, V. Bayazitov, et al., Processes 10, 2063 (2022). https://doi.org/10.3390/pr10102063

    Article  CAS  Google Scholar 

  15. I. M. Piskarev, Tech. Phys. 44, 53 (1999).

    Article  CAS  Google Scholar 

  16. I. M. Piskarev, IEEE Trans. Plasma Sci. 49, 1363 (2021).

    Article  CAS  Google Scholar 

  17. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1986).

    Google Scholar 

  18. S. D. Razumovskii and G. E. Zaikov, Ozone and Its Reactions with Organic Compounds (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  19. I. M. Piskarev, High Energy Chem. 54, 205 (2020).

    Article  CAS  Google Scholar 

  20. I. P. Ivanova, I. M. Piskarev, and S. V. Trofimova, Am. J. Phys. Chem. 2, 44 (2013).

    Article  Google Scholar 

  21. Yu-Ran Luo, Handbook of Dissocisation Energies in Organic Compounds (CRC, Boca Raton, 2003).

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Piskarev.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piskarev, I.M. Possibilities of Corona Electric Discharge for Deep Purification of Drinking Water from Phenol and Tetracycline. Russ. J. Phys. Chem. (2024). https://doi.org/10.1134/S0036024424030191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036024424030191

Keywords:

Navigation