Skip to main content
Log in

Comparative Analysis of the Mechanisms and Kinetics of CO2 Hydrate Formation with Sodium Dodecyl Sulfate and L-Leucine Additions under Static Conditions

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Currently, to solve the key problem of increasing the efficiency of hydrate technologies for transportation, storage, and utilization of natural and anthropogenic gases in the form of gas hydrates, the use of promoter additives is proposed, among which sodium dodecyl sulfate (SDS) is considered one of the most effective and best-studied additive. However, the promoting effect of SDS does not apply to CO2 hydrate formation. Amino acids are a new class of gas hydrate formation promoters that have recently been actively studied. We have studied the effect of L-leucine amino acid on the growth kinetics and morphology of CO2 hydrates. A 0.5 wt % L-leucine addition increases the rate of hydrate formation and the conversion of water to hydrate dozens of times. It was established that the hydrate film formed at the gas–liquid interface on the side of the gas phase is permeable for liquid, while on the side of the liquid phase, the formation of an impermeable hydrate film is inhibited by the L-leucine additive. This combined effect of L-leucine on the hydrate film morphology at the gas–liquid interface leads to the formation of porous hydrate deposits on the side surface of the reactor and to growth of CO2 hydrates in the gas phase by the capillary mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. N. Nguyen, V. T. La, C. D. Huynh, and A. V. Nguyen, Appl. Energy 307, 118237 (2022). https://doi.org/10.1016/j.apenergy.2021.118237

  2. Rehman and A. B. Lal, Energies 15, 8309 (2022). https://doi.org/10.3390/en15218309

    Article  CAS  Google Scholar 

  3. G. Pandey, T. Poothia, and A. Kumar, Appl. Energy 326, 119900 (2022). https://doi.org/10.1016/j.apenergy.2022.119900

  4. H. P. Veluswamy, A. J. H. Wong, P. Babu, et al., Chem. Eng. J. 290, 161 (2016). https://doi.org/10.1016/j.cej.2016.01.026

    Article  CAS  Google Scholar 

  5. A. Hassanpouryouzb, E. Joonaki, M. F. Vasheghani, et al., Chem. Soc. Rev. 49, 5225 (2020). https://doi.org/10.1039/c8cs00989a

    Article  CAS  Google Scholar 

  6. A. Yu. Manakov, N. V. Penkov, and T. V. Rodionova, Russ. Chem. Rev. 86, 845 (2017). https://doi.org/10.1070/RCR4720

    Article  CAS  Google Scholar 

  7. A. Yu. Manakov and A. S. Stoporev, Russ. Chem. Rev. 90, 566 (2021).https://doi.org/10.1070/RCR4986

    Article  Google Scholar 

  8. O. B. Kutergin, V. P. Mel’nikov, and A. N. Nesterov, Dokl. Akad. Nauk 323, 549 (1992).

    CAS  Google Scholar 

  9. P. Gayet, C. Dicharry, G. Marion, et al., Chem. Eng. Sci. 60, 5751 (2005). https://doi.org/10.1016/j.ces.2005.04.069

    Article  CAS  Google Scholar 

  10. K. Okutani, Y. Kuwabara, and Y. H. Mori, Chem. Eng. Sci. 63, 183 (2008). https://doi.org/10.1016/j.ces.2007.09.012

    Article  CAS  Google Scholar 

  11. J. Zhang and J. W. Lee, Ind. Eng. Chem. Res. 48, 5934 (2009). https://doi.org/10.1021/ie801170u

    Article  CAS  Google Scholar 

  12. D. Daniel-David, F. Guerton, C. Dicharry, et al., Chem. Eng. Sci. 132, 118 (2015). https://doi.org/10.1016/j.ces.2015.04.015

    Article  CAS  Google Scholar 

  13. N. S. Molokitina, A. N. Nesterov, L. S. Podenko, and A. M. Reshetnikov, Fuel 235, 1400 (2019). https://doi.org/10.1016/j.fuel.2018.08.126

    Article  CAS  Google Scholar 

  14. Y. Liu, B. Chen, Y. Chen, et al., Energy Technol. 3, 815 (2015). https://doi.org/10.1002/ente.201500048

    Article  CAS  Google Scholar 

  15. Y. Cai, Y. Chen, Q. Li, et al., Energy Technol. 5, 1195 (2017). https://doi.org/10.1002/ente.201600731

    Article  CAS  Google Scholar 

  16. G. Bhattacharjee and P. Linga, Energy Fuels 35, 7553 (2021). https://doi.org/10.1021/acs.energyfuels.1c00502

    Article  CAS  Google Scholar 

  17. A. Kumar, G. Bhattacharjee, B. D. Kulkarni, and R. Kumar, Ind. Eng. Chem. Res. 54, 12217 (2015). https://doi.org/10.1021/acs.iecr.5b03476

    Article  CAS  Google Scholar 

  18. H. P. Veluswamy, Q. W. Hong, and P. Linga, Cryst. Growth Des. 16, 5932 (2016). https://doi.org/10.1021/acs.cgd.6b00997

    Article  CAS  Google Scholar 

  19. Z. Liu, Y. Zeng, and W. Wang, IOP Conf. Ser.: Earth Environ. Sci. 474 (5) (2020). https://doi.org/10.1088/1755-1315/474/5/052054

  20. M. Ricaurte, J. P. Torré, A. Asbai, et al., Ind. Eng. Chem. Res. 51, 3157 (2012). https://doi.org/10.1021/ie2023993

    Article  CAS  Google Scholar 

  21. A. N. Nesterov and A. M. Reshetnikov, J. Nat. Gas Sci. Eng. 99, 104424 (2022). https://doi.org/10.1016/j.jngse.2022.104424

  22. E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases, 3rd ed. (CRC, Tailor Francis Group, Boca Raton, 2008).

    Google Scholar 

  23. T. Uchida, T. Hondoh, S. Mae, and J. Kawabata, in Direct Ocean Disposal of Carbon Dioxide, Ed. by T. Uchida and T. Hondoh (TERRAPUB, Tokyo, 1995), p. 45.

    Google Scholar 

  24. A. O. Drachuk, N. S. Molokitina, A. A. Kibkalo, and L. S. Podenko, Russ. J. Appl. Chem. 95, 506 (2022). https://doi.org/10.1134/S107042722204005X

    Article  CAS  Google Scholar 

  25. S. Circone, L. A. Stern, S. H. Kirby, et al., J. Phys. Chem. B 107, 5529 (2003). https://doi.org/10.1021/jp027391j

    Article  CAS  Google Scholar 

  26. R. Ohmura, W. Shimada, T. Uchida, et al., Philos. Mag. 84, 1 (2004). https://doi.org/10.1080/14786430310001623542

    Article  CAS  Google Scholar 

  27. T. P. Adamova, S. S. Skiba, A. Y. Manakov, and S. Y. Misyura, Chin. J. Chem. Eng. 56, 266 (2023). https://doi.org/10.1016/j.cjche.2022.07.006

    Article  CAS  Google Scholar 

  28. J. D. Botimer, D. Dunn-Rankin, and P. Taborek, Chem. Eng. Sci. 142, 89 (2016). https://doi.org/10.1016/j.ces.2015.11.035

    Article  CAS  Google Scholar 

  29. S. Venet, F. Guerton, A. Desmedt, and D. Broseta, Chem. Eng. Sci. 248, 117193 (2022). https://doi.org/10.1016/j.ces.2021.117193

  30. X. Zhang, J. Zhao, C. Chen, et al., Chem. Eng. Sci. 276, 118761 (2023). https://doi.org/10.1016/j.ces.2023.118761

Download references

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (project nos. 121041600040-3 and 122011400146-6) with partial financial support from the Russian Foundation for Basic Research and the Tyumen Region (project no. 20-43-720002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Nesterov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterov, A.N., Reshetnikov, A.M. Comparative Analysis of the Mechanisms and Kinetics of CO2 Hydrate Formation with Sodium Dodecyl Sulfate and L-Leucine Additions under Static Conditions. Russ. J. Phys. Chem. (2024). https://doi.org/10.1134/S0036024424020158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036024424020158

Keywords:

Navigation