Skip to main content
Log in

Thermodynamic Characteristics of the Sodium Dimolybdate Single Crystal: Enthalpy and Heat Capacity

  • THERMODYNAMICS AND MATERIALS SCIENCE
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The standard enthalpy of formation of sodium dimolybdate was determined by dissolution calorimetry based on the measured enthalpies of dissolution of Na2CO3, MoO3, and Na2Mo2O7 in a 0.2 M NaOH solution and the literature data: ΔfH0(Na2Mo2O7, 298.15 K) = −2245.3 ± 6.3 kJ/mol. The lattice enthalpy was calculated using the Born–Haber cycle: –54 730 kJ/mol. The wavelength of luminescence radiation decreased from 650 to 540 nm on passing from sodium molybdate to sodium tungstate, and the lattice enthalpy decreased from –54 730 kJ/mol (Na2Mo2O7) to –49 030 kJ/mol (Na2W2O7). The temperature dependence of the heat capacity of sodium dimolybdate was determined in the temperature range 320–785 K. There are no phase transitions in this range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. Kim, I. R. Pey, A. Khan, et al., Cryst. Res. Technol. 54, 1900079 (2019).

  2. F. Xu, G. Zhang, M. Luo, G. Peng, et al., Nat. Sci. Rev. 8, 1 (2021).

    Google Scholar 

  3. P. Chen, Y. Chen, L. Jiang, et al., J. Alloys Compd. 784, 370 (2019).

    Article  CAS  Google Scholar 

  4. A. Aliane, I. Ch. Avetissov, O. P. Bariniva, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 949, 162784 (2020).

  5. T. B. Bekker, N. Coron, F. A. Danevich, et al., Astropart. Phys. 72, 38 (2016).

    Article  Google Scholar 

  6. A. Giuliani, J. Phys.: Conf. Ser. 888, 012239 (2017).

  7. B. N. Tsydypova, M. M. Mazur, and A. A. Pavlyuk, Inorg. Mater. 48, 936 (2012).

    Article  CAS  Google Scholar 

  8. N. I. Matskevich, V. N. Shlegel, A. N. Semerikova, et al., J. Chem. Eng. Data 65, 1523 (2020).

    Article  CAS  Google Scholar 

  9. D. V. Poda, Physics 3, 473 (2021).

    Article  Google Scholar 

  10. N. I. Matskevich, A. N. Semerikova, V. N. Shlegel, et al., J. Alloys Compd. 850, 156683 (2021).

  11. Ya. V. Vasiliev, Yu. A. Borovlev, E. N. Galashov, et al., Scintillation Materials. Engineering, Devices, Application (ISMA, Kharkov, 2011) [in Russian].

    Google Scholar 

  12. N. I. Matskevich, A. N. Semerikova, V. A. Trifonov, et al., Russ. J. Inorg. Chem. 68, 166 (2023).

    Article  CAS  Google Scholar 

  13. Yu. A. Borovlev, N. V. Ivannikova, V. N. Shlegel, et al., J. Cryst. Growth 229, 305 (2001).

    Article  CAS  Google Scholar 

  14. L. Berge, R. S. Boiko, M. Chapellier, et al., J. Instrum. 6, 06004 (2014).

    Google Scholar 

  15. I. I. Novoselov, O. V. Gileva, J. S. Choe, et al., Inorg. Mater. 56, 867 (2020).

    Article  Google Scholar 

  16. Bruker AXS Inc., APEX2, Version 2012.2-0, SAINT, Version 8.18c, and SADABS, Version 2008/1 (Bruker Adv. X-ray Solutions, Madison, WI, 2000–2012).

  17. G. M. Sheldrick, Acta Crystallogr., Sect. C 71, 3 (2015).https://doi.org/10.1107/S2053229614024218

  18. Diamond–Crystal and Molecular Structure Visualization, Crystal Impact Dr. H. Putz and Dr. K. Brandenburg GbR, Bonn, Germany. https://www.crystalimpact.de/diamond.

  19. Thermal Constants of Substances, Ed. by V. P. Glushko (Nauka, Moscow, 1965–1982), Nos. 1–10 [in Russian].

  20. N. I. Matskevich, G. Krabbes, and P. Berasteguie, Thermochim. Acta 397, 97 (2003).

    Article  CAS  Google Scholar 

  21. N. I. Matskevich, Th. Wolf, and Yu. I. Pochivalov, Inorg. Chem. 47, 2581 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. M. V. Kilday, J. Res. Natl. Bur. Stand., 467 (1980).

  23. T. A. Gavrilova, N. V. Ivannikova, V. N. Shlegel, et al., Solid State Phenom. 213, 160 (2014).

    Article  Google Scholar 

  24. Yu. F. Minenkov, N. I. Matskevich, Yu. G. Stenin, et al., Thermochim. Acta 278, 1 (1996).

    Article  CAS  Google Scholar 

  25. N. I. Matskevich, Th. Wolf, D. Pischur, et al., J. Therm. Anal. Calorim. 124, 1745 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

N.I. Matskevich, A.N. Semerikova, V.D. Grigor’eva, D.V. Kochelakov, S.A. Luk’yanova, V.N. Shlegel’, and E.N. Tkachev are grateful to the Ministry of Science and Higher Education of the Russian Federation (project 121031700314-5) for granting the use of a calorimeter, growth units, and diffractometer.

Funding

This work was supported by the Russian Science Foundation (project 19-19-00095-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Matskevich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ADDITIONAL INFORMATION

This article is part of the Materials of the XV Symposium with International Participation “Thermodynamics and Materials Science,” Novosibirsk, July 3–7, 2023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matskevich, N.I., Semerikova, A.N., Grigor’eva, V.D. et al. Thermodynamic Characteristics of the Sodium Dimolybdate Single Crystal: Enthalpy and Heat Capacity. Russ. J. Phys. Chem. (2024). https://doi.org/10.1134/S0036024424010151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036024424010151

Keywords:

Navigation