Skip to main content
Log in

Methanol Dehydrogenation via Rutile TiO2-Based Single-Atom Catalysts: Structure, Stability, and Selectivity

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Single-atom catalysts possessing distinct geometric and electronic structures have permitted the highly efficient performance and tunable catalytic property for methanol dehydrogenation. The structure and stability of rutile TiO2-based single-atom catalyst, and the selectivity for methanol dehydrogenation were addressed via DFT + U calculations. The stable single-atom catalysts: rutile Co1@TiO2 and Ru1/TiO2, have been identified from all the possible terminations. Their interface structures, stabilities in thermodynamics, and selectivity for methanol dehydrogenation are determined by the two important parameters: metal-atom doping site and surficial oxygen stoichiometry. In particular, the substitutional rutile Co1@TiO2(110) facet can boost direct methanol dehydrogenation, activate O–H and C–H bonds, and then release formaldehyde, H2, and CO. The rutile Ru1/TiO\(_{{2 + x}}\)(110) one, a supported neutral Ru atom with additional oxygen on the stoichiometric rutile TiO2(110) facet, prefers to facilitate partial oxidation of methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. Garcia, E. Arriola, W. H. Chen, and M. D. de Luna, Energy 217, 119384 (2021). https://doi.org/10.1016/j.energy.2020.119384

  2. S. Sengodan, R. Lan, J. Humphreys, D. W. Du, W. Xu, H. T. Wang, and S. W. Tao, Renewable Sustainable Energy Rev. 82, 761 (2018). https://doi.org/10.1016/j.rser.2017.09.071

    Article  CAS  Google Scholar 

  3. Y. O. Wang, E. P. Yao, L. Z. Wu, J. Feldmann, and J. K. Stolarczyk, Angew. Chem. Int. Ed. 60, 26694 (2021). https://doi.org/10.1002/anie.202109979

    Article  CAS  Google Scholar 

  4. W. Q. Lu, R. J. Zhang, S. Toan, R. Xu, F. Y. Zhou, Z. Sun, and Z. Q. Sun, Chem. Eng. J. 429, 132286 (2022). https://doi.org/10.1016/j.cej.2021.132286

  5. A. Kumar, P. Daw, and D. Milstein, Chem. Rev. 122, 385 (2022). https://doi.org/10.1021/acs.chemrev.1c00412

    Article  CAS  PubMed  Google Scholar 

  6. X. Zhang, C. Shi, B. B. Chen, A. N. Kuhn, D. Ma, and H. Yang, Curr. Opin. Chem. Eng. 20, 68 (2018). https://doi.org/10.1016/j.coche.2018.02.010

    Article  Google Scholar 

  7. S. Q. Feng, X. S. Lin, X. G. Song, Y. Liu, Z. Jiang, P. Hemberger, A. Bodi, and Y. J. Ding, J. Catal. 381, 193 (2020). https://doi.org/10.1016/j.jcat.2019.10.032

    Article  CAS  Google Scholar 

  8. Y. B. Lu, Z. H. Zhang, H. M. Wang, and Y. Wang, Appl. Catal., B 292, 120162 (2021). https://doi.org/10.1016/j.apcatb.2021.120162

  9. H. He, H. H. Wang, J. J. Liu, X. J. Liu, W. Z. Li, and Y. N. Wang, Molecules 26, 6501 (2021). https://doi.org/10.3390/molecules26216501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. R. Lang, W. Xi, J. C. Liu, Y. T. Cui, T. B. Li, A. F. Lee, F. Chen, Y. Chen, L. Li, L. Li, J. Lin, S. Miao, X. Y. Liu, A. Q. Wang, X. D. Wang, et al., Nat. Commun. 10, 234 (2019). https://doi.org/10.1038/s41467-018-08136-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. R. Qi, B. E. Zhu, Z. K. Han, and Y. Gao, ACS Catal. 12, 8269 (2022). https://doi.org/10.1021/acscatal.2c02149

    Article  CAS  Google Scholar 

  12. G. K. Han, X. Zhang, W. Liu, Q. H. Zhang, Z. Q. Wang, J. Cheng, T. Yao, L. Gu, C. Y. Du, Y. Z. Gao, and G. P. Yin, Nat. Commun. 12, 6335 (2021). https://doi.org/10.1038/s41467-021-26747-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. V. Muravev, G. Spezzati, Y. Q. Su, A. Parastaev, F. K. Chiang, A. Longo, C. Escudero, N. Kosinov, and E. J. M. Hensen, Nat. Catal. 4, 469 (2021). https://doi.org/10.1038/s41929-021-00621-1

    Article  CAS  Google Scholar 

  14. H. F. Xiong, A. K. Datye, and Y. Wang, Adv. Mater. 33, 2004319 (2021). https://doi.org/10.1002/adma.202004319

  15. H. Q. Jin, P. P. Li, P. X. Cui, J. A. Shi, W. Zhou, X. H. Yu, W. G. Song, and C. Y. Cao, Nat. Commun. 13, 723 (2022). https://doi.org/10.1038/s41467-022-28367-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. J. Jeong, D. J. Shin, B. S. Kim, J. M. Bae, S. Y. Shin, C. Y. Choe, J. W. Han, and H. Lee, Angew. Chem. Int. Ed. 59, 20691 (2020). https://doi.org/10.1002/anie.202009776

    Article  CAS  Google Scholar 

  17. Y. J. Ren, Y. Tang, L. L. Zhang, X. Y. Liu, L. Li, S. Miao, D. Su, A. Q. Wang, J. Li, and T. Zhang, Nat. Commun. 10, 4500 (2019). https://doi.org/10.1038/s41467-019-12459-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. L. L. Lin, Q. L. Yu, M. Peng, A. Li, S. Y. Yao, S. H. Tian, X. Liu, A. Li, Z. Jiang, R. Gao, X. D. Han, Y. W. Li, X. D. Wen, W. Zhou, and D. Ma, J. Am. Chem. Soc. 143, 309 (2021). https://doi.org/10.1021/jacs.0c10776

    Article  CAS  PubMed  Google Scholar 

  19. L. L. Lin, W. Zhou, R. Gao, S. Y. Yao, X. Zhang, W. Q. Xu, S. J. Zheng, Z. Jiang, Q. L. Yu, Y. W. Li, C. Shi, X. D. Wen, and D. Ma, Nature (London, U.K.) 544, 80 (2017). https://doi.org/10.1038/nature21672

    Article  CAS  Google Scholar 

  20. M. D. Marcinkowski, S. F. Yuk, N. Doudin, R. S. Smith, M. T. Nguyen, B. D. Kay, V. A. Glezakou, R. Rousseau, and Z. Dohnalek, ACS Catal. 9, 10977 (2019). https://doi.org/10.1021/acscatal.9b03891

    Article  CAS  Google Scholar 

  21. Z. Y. Jiang, X. B. Feng, J. L. Deng, C. He, M. Douthwaite, Y. K. Yu, J. Liu, Z. P. Hao, and Z. Zhao, Adv. Funct. Mater. 29, 1902041 (2019). https://doi.org/10.1002/adfm.201902041

  22. C. Tang, L. Chen, H. J. Li, L. Q. Li, Y. Jiao, Y. Zheng, H. L. Xu, K. Davey, and S. Z. Qiao, J. Am. Chem. Soc. 143, 7819 (2021). https://doi.org/10.1021/jacs.1c03135

    Article  CAS  PubMed  Google Scholar 

  23. Z. Q. Zhang, J. P. Liu, J. Wang, Q. Wang, Y. H. Wang, K. Wang, Z. Wang, M. Gu, Z. H. Tang, J. W. Lim, T. S. Zhao, and F. Ciucci, Nat. Commun. 12, 5235 (2021). https://doi.org/10.1038/s41467-021-25562-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. Wang, W. Zhang, W. Y. Zhu, W. C. Zhuang, and M. Lei, Mol. Catal. 482, 110670 (2020). https://doi.org/10.1016/j.mcat.2019.110670

  25. J. Wang, M. Lei, Z. X. Wang, Y. S. Liu, W. C. Zhuang, and W. Y. Zhu, Appl. Surf. Sci. 542, 148541 (2021). https://doi.org/10.1016/j.apsusc.2020.148541

  26. D. Zhao, Z. W. Zhuang, X. Cao, C. Zhang, Q. Peng, C. Chen, and Y. D. Li, Chem. Soc. Rev. 49, 2215 (2020). https://doi.org/10.1039/c9cs00869a

    Article  CAS  PubMed  Google Scholar 

  27. L. L. Zhang, Y. J. Ren, W. G. Liu, A. Q. Wang, and T. Zhang, Natl. Sci. Rev. 5, 653 (2018). https://doi.org/10.1093/nsr/nwy077

    Article  CAS  Google Scholar 

  28. J. B. Xi, H. S. Jung, Y. Xu, F. Xiao, J. W. Bae, and S. Wang, Adv. Funct. Mater. 31, 2008318 (2021). https://doi.org/10.1002/adfm.202008318

  29. Q. Guo, C. Y. Zhou, Z. B. Ma, and X. M. Yang, Adv. Mater., 1901997 (2019). https://doi.org/10.1002/adma.201901997

  30. V. L. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).

    CAS  Google Scholar 

  31. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998). https://doi.org/10.1103/PhysRevB.57.1505

    Article  CAS  Google Scholar 

  32. G. Kresse and J. Furthmüller, Phys. Chem. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  33. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).https://doi.org/10.1016/0927-0256(96)00008-0

  34. J. J. Brown and A. J. Page, J. Chem. Phys. 153, 224116 (2020). https://doi.org/10.1063/5.0027080

  35. E. Finazzi, C. di Valentin, G. Pacchioni, and A. Selloni, J. Chem. Phys. 129, 154113 (2008). https://doi.org/10.1063/1.2996362

  36. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  37. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Chem. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  38. G. Mills, H. Jonsson, and G. K. Schenter, Surf. Sci. 324, 305 (1995). https://doi.org/10.1016/0039-6028(94)00731-4

    Article  CAS  Google Scholar 

  39. G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000). https://doi.org/10.1063/1.1329672

    Article  CAS  Google Scholar 

  40. W. Zhang, M. Pu, and M. Lei, Langmuir 36, 5891 (2020). https://doi.org/10.1021/acs.langmuir.0c00644

    Article  CAS  PubMed  Google Scholar 

  41. Y. Tang, C. Asokan, M. Xu, G. W. Graham, X. Pan, P. Christopher, J. Li, and P. Sautet, Nat. Commun. 10, 4488 (2019). https://doi.org/10.1038/s41467-019-12461-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. H. Machrafi, Phys. Lett. A 384, 126485 (2020). https://doi.org/10.1016/j.physleta.2020.126485

Download references

Funding

This work was supported by National Natural Science Foundation of China (grant no. 21703194).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ju Wang or Lin Tian.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

The supporting information includes computational details for chemical potentials of single-atom catalysts, structure and stability for all the terminations of single-atom Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au catalysts at the exposed rutile TiO2(110) facets, the key intermediates of direct methanol dehydrogenation at the substitutional rutile Co1@TiO2(110) facet, and the key intermediates of methanol partial oxidation at the supported rutile Ru1/TiO2(110) facet.

11504_2023_5384_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, Y., Zhu, W. et al. Methanol Dehydrogenation via Rutile TiO2-Based Single-Atom Catalysts: Structure, Stability, and Selectivity. Russ. J. Phys. Chem. 97, 2958–2965 (2023). https://doi.org/10.1134/S0036024423130125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423130125

Keywords:

Navigation