Skip to main content
Log in

DFT Study on Co–H Bond Dissociation Enthalpies of Cobalt Hydrides in Metal-Catalyzed Hydrogen Atom Transfer Reactions

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Metal-catalyzed hydrogen atom transfer (MHAT) reactions are widely used and nowadays constitute a large class of chemically catalyzed reactions and provide a convenient way to obtain various chemical products and synthesize building blocks. The cobalt compound has been identified as an effective catalyst for MHAT reactions due to its low cost, high abundance, high efficiency and high selectivity, in which the cobalt hydride is an indispensable catalytic active intermediate, and the breakage of cobalt-hydrogen bonds is crucial for the reaction to proceed. Therefore, the Co–H bond dissociation enthalpy (BDE) becomes an extremely significant thermodynamic property. In this report, the Co–H BDEs of some cobalt hydrides were calculated with experimental values by using ten DFT functionals, and the results show that the B97D functional gave the optimal precision with a root mean square error (RMSE) of 3.1 kcal/mol. Next, the BDEs and substituent effects of ten kinds of cobalt hydrides were further investigated. The results show that ligands may remarkably influence the Co–H BDEs and substituent effects on Co-H BDEs vary in different kinds of cobalt hydrides. In addition, analyses on the natural bond orbital (NBO) and the energies of frontier orbitals were performed to reveal more about the variation patterns of the Co–H BDE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. S. A. Green, S. W. M. Crossley, J. L. M. Matos, et al., Acc. Chem. Res. 51, 2628 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. W. Y. Ai, R. Zhong, X. F. Liu, et al., Chem. Rev. (Washington, DC, U. S.) 119, 2876 (2019).

    Article  CAS  Google Scholar 

  3. E. S. Wiedner, M. B. Chambers, C. L. Pitman, et al., Chem. Rev. (Washington, DC, U. S.) 116, 8655 (2016).

    Article  CAS  Google Scholar 

  4. H. Adkins and G. Krsek, J. Am. Chem. Soc. 71, 3051 (1949).

    Article  CAS  Google Scholar 

  5. P. J. Chirik, Acc. Chem. Res. 48, 1687 (2015).

    Article  PubMed  CAS  Google Scholar 

  6. Y. Y. Li, S. L. Yu, W. Y. Shen, et al., Acc. Chem. Res. 48, 2587 (2015).

    Article  PubMed  CAS  Google Scholar 

  7. K. Gao and N. Yoshikai, Acc. Chem. Res. 47, 1208 (2014).

    Article  PubMed  CAS  Google Scholar 

  8. G. A. Filonenko, R. van Putten, E. J. M. Hensen, et al., Chem. Soc. Rev. 47, 1459 (2018).

    Article  PubMed  CAS  Google Scholar 

  9. J. Sun and L. Deng, Catal. Commun. 6, 290 (2015).

    Google Scholar 

  10. X. Y. Du and Z. Huang, Catal. Commun. 7, 1227 (2017).

    Google Scholar 

  11. J. V. Obligacion and P. J. Chirik, Rev. Analg. 2, 15 (2018).

    CAS  Google Scholar 

  12. Z. Huang, Z. Q. Zuo, H. N. Wen, et al., Synlett 29, 1421 (2018).

    Article  Google Scholar 

  13. J. H. Chen and Z. Lu, Org. Chem. Front. 5, 260 (2018).

    Article  CAS  Google Scholar 

  14. V. van der Puyl, R. O. McCourt, and R. A. Shenvi, Tetrahedron Lett. 72, 153047 (2021).

  15. M. H. Guan, H. R. Miao, T. Qin, et al., Chem. Commun. 58, 13023 (2022).

    Article  CAS  Google Scholar 

  16. D. Vrubliauskas, B. M. Gross, and C. D. Vanderwal, J. Am. Chem. Soc. 143, 2944 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Y. Ji, Z. Y. Xin, H. B. He, et al., J. Am. Chem. Soc. 141, 16208 (2019).

    Article  PubMed  CAS  Google Scholar 

  18. B. S. Freiser, Organometallic Ion Chemistry (Springer, New York, 2012).

    Google Scholar 

  19. J. T. Landrum and C. D. Hoff, J. Organomet. Chem. 282, 215 (1985).

    Article  CAS  Google Scholar 

  20. J. A. Connor, M. T. Zafarani-Moattar, J. Bickerton, et al., Organometallics 1, 1166 (1982).

    Article  CAS  Google Scholar 

  21. K. Tokmic and A. R. Fout, J. Am. Chem. Soc. 138, 13700 (2016).

    Article  PubMed  CAS  Google Scholar 

  22. X. J. Qi, Z. Li, Y. Fu, et al., Organometallics 27, 2688 (2008).

    Article  CAS  Google Scholar 

  23. L. Y. Shi, X. L. Lv, J. F. Weng, et al., Crop J. 2, 132 (2014).

    Article  Google Scholar 

  24. E. Clot, C. Megret, O. Eisenstein, et al., J. Am. Chem. Soc. 131, 7817 (2009).

    Article  PubMed  CAS  Google Scholar 

  25. D. Devarajan, T. B. Gunnoe, and D. H. Ess, Inorg. Chem. (Washington, DC, U. S.) 51, 6710 (2012).

    Article  CAS  Google Scholar 

  26. J. Uddin, C. M. Morales, J. H. Maynard, et al., Organometallics 25, 5566 (2006).

    Article  CAS  Google Scholar 

  27. S. J. Blanksby and G. B. Ellison, Acc. Chem. Res. 36, 255 (2003).

    Article  PubMed  CAS  Google Scholar 

  28. Y. H. Cheng, X. Zhao, K. S. Song, et al., J. Org. Chem. 67, 6638 (2002).

    Article  PubMed  CAS  Google Scholar 

  29. K. S. Song, L. Liu, and Q. X. Guo, J. Org. Chem. 68, 4604 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. G. T. Bae, B. Dellinger, and R. W. Hall, J. Phys. Chem. A 115, 2087 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. J. Hsiao and M.-D. Su, Organometallics 26, 4432 (2007).

    Article  CAS  Google Scholar 

  32. C. R. Landis, S. Feldgus, J. Uddin, et al., Organometallics 19, 4878 (2000).

    Article  CAS  Google Scholar 

  33. J.-H. Sheu and M.-D. Su, J. Organomet. Chem. 696, 1221 (2011).

    Article  CAS  Google Scholar 

  34. O. Gutierrez and D. J. Tantillo, Organometallics 29, 3541 (2010).

    Article  CAS  Google Scholar 

  35. C. Trinh, A. Y. Timoshkin, and G. Frenking, J. Phys. Chem. A 113, 3420 (2009).

    Article  PubMed  CAS  Google Scholar 

  36. M.-D. Su and S.-Y. Chu, J. Phys. Chem. A 105, 3591 (2001).

    Article  CAS  Google Scholar 

  37. O. Gutierrez and M. C. Kozlowski, in Understanding Organometallic Reaction Mechanisms and Catalysis, Ed. by V. A. Ananikov (Wiley, New York, 2014), p. 93.

    Google Scholar 

  38. M. Dolg, U. Wedig, H. Stoll, et al., J. Chem. Phys. 86, 866 (1987).

    Article  CAS  Google Scholar 

  39. D. Andrae, U. Haeussermann, M. Dolg, et al., Theor. Chim. Acta 77, 123 (1990).

    Article  CAS  Google Scholar 

  40. A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B 113, 4538 (2009).

    Article  PubMed  CAS  Google Scholar 

  41. C. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  42. J. P. Perdew, Phys. Rev. B 33, 8822 (1986).

    Article  CAS  Google Scholar 

  43. S. Grimme, J. Comput. Chem. 27, 1787 (2006).

    Article  PubMed  CAS  Google Scholar 

  44. A. Austin, G. A. Petersson, M. J. Frisch, et al., J. Chem. Theory Comput. 8, 4989 (2012).

    Article  PubMed  CAS  Google Scholar 

  45. J.-D. Chai and M. Head-Gordon, Chem. Phys. Lett. 467, 176 (2008).

    Article  CAS  Google Scholar 

  46. J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).

    Article  PubMed  CAS  Google Scholar 

  47. Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006).

    Article  PubMed  Google Scholar 

  48. Y. Zhao and D. G. Truhlar, Acc. Chem. Res. 41, 157 (2008).

    Article  PubMed  CAS  Google Scholar 

  49. H. Hirao, J. Phys. Chem. A 115, 9308 (2011).

    Article  PubMed  CAS  Google Scholar 

  50. J. Yang and M. P. Waller, J. Phys. Chem. A 117, 174 (2013).

    Article  PubMed  CAS  Google Scholar 

  51. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).

    Article  CAS  Google Scholar 

  52. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian (Wallingford, CT, 2016).

  53. J. Halpern, Discuss. Faraday Soc. 46, 1 (1968).

    Article  Google Scholar 

  54. P. B. Armentrout and L. S. Sunderlin, in Transition Metal Hydrides, Ed. by A. Dedieu (VCH, New York, 1992).

    Google Scholar 

  55. P. B. Armentrout and B. L. Kickel, Organometallic Ion Chemistry (Kluwer, Dordrecht, 1996), p. 1.

    Google Scholar 

  56. M. Tilset and V. D. Parker, J. Am. Chem. Soc. 111, 6711 (1989).

    Article  CAS  Google Scholar 

  57. C. C. H. Atienza, T. Diao, K. J. Weller, et al., J. Am. Chem. Soc. 136, 12108 (2014).

    Article  PubMed  CAS  Google Scholar 

  58. A. D. Ibrahim, S. W. Entsminger, and A. R. Fout, ACS Catal. 7, 3730 (2017).

    Article  CAS  Google Scholar 

  59. K. Duvvuri, K. R. Dewese, M. M. Parsutkar, et al., J. Am. Chem. Soc. 141, 7365 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. J. H. Chen, J. Guo, Z. Lu, Chin. J. Chem. 36, 1075 (2018).

    Article  CAS  Google Scholar 

  61. M. S. Jeletic, M. T. Mock, A. M. Appel, et al., J. Am. Chem. Soc. 135, 11533 (2013).

    Article  PubMed  CAS  Google Scholar 

  62. H. Shigehisa, Synlett 26, 2479 (2015).

    Article  CAS  Google Scholar 

  63. T. Yamada, Synthesis 2008, 1628 (2008).

    Article  Google Scholar 

  64. J.-i. Setsune, Y. Ishimaru, T. Moriyama, et al., J. Chem. Soc. Pak., 555 (1991).

  65. T. Okamoto and S. Oka, Tetrahedron Lett. 22, 2191 (1981).

    Article  CAS  Google Scholar 

  66. G. Li, A. Han, M. E. Pulling, et al., J. Am. Chem. Soc. 134, 14662 (2012).

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Shanghai Supercomputer Center for the computational resources.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenrui Zheng.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, L., Zheng, W., Yang, Y. et al. DFT Study on Co–H Bond Dissociation Enthalpies of Cobalt Hydrides in Metal-Catalyzed Hydrogen Atom Transfer Reactions. Russ. J. Phys. Chem. 97, 2755–2767 (2023). https://doi.org/10.1134/S0036024423120208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423120208

Keywords:

Navigation