Skip to main content
Log in

Phase Transition Thermodynamics: Evaporation Enthalpy of 13 Naphthalene Derivatives

  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript


The quality of naphthalene derivatives in use is assessed by their phase transition thermodynamic properties. The naphthalene derivatives’ sublimation/vaporization enthalpy was determined at 298.15 K. The evaporation enthalpy of the compounds was estimated utilizing solution calorimetry-additive scheme approach. Adiabatic solution calorimetry was applied to measure the compounds’ solution enthalpies in the benzene solvent at 298.15 K. Additionally, using an additivity scheme approach, the solvation enthalpy for naphthalene derivatives was calculated. In addition, in order to measure the evaporation enthalpy of naphthalene derivatives, gas chromatography was also applied. The results of the evaporation enthalpies were quite compatible with those found in the published data. For the first time, the evaporation enthalpy of nine naphthalene derivatives was discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others


  1. A. Delle Site, J. Phys. Chem. Ref. Data 26, 157 (1997).

    Article  Google Scholar 

  2. B. N. Solomonov, M. A. Varfolomeev, R. N. Nagrimanov, et al., Thermochim. Acta 622, 88 (2015).

    Article  CAS  Google Scholar 

  3. R. S. Abdullah and B. N. Solomonov, Chem. Thermodyn. Therm. Anal., 100087 (2022).

  4. S. P. Verevkin and V. N. Emel’yanenko, Fluid Phase Equilib. 266, 64 (2008).

    Article  CAS  Google Scholar 

  5. R. Siewert, A. A. Samatov, R. N. Nagrimanov, and S. P. Verevkin, J. Chem. Thermodyn. 143, 106060 (2020).

  6. A. A. Zhabina, R. N. Nagrimanov, V. N. Emel’yanenko, and B. N. Solomonov, J. Chem. Thermodyn. 103, 69 (2016).

    Article  CAS  Google Scholar 

  7. C. Gobble, J. Chickos, and S. P. Verevkin, J. Chem. Eng. Data 59, 1353 (2014).

    Article  CAS  Google Scholar 

  8. D. Lipkind and J. S. Chickos, J. Chem. Eng. Data 55, 698 (2010).

    Article  CAS  Google Scholar 

  9. J. Spencer and J. Chickos, J. Chem. Eng. Data 58, 3513 (2013).

    Article  CAS  Google Scholar 

  10. S. P. Verevkin, J. Chem. Thermodyn. 35, 1237 (2003).

  11. R. N. Nagrimanov, A. A. Samatov, and B. N. Solomonov, Thermochim. Acta 710, 179155 (2022).

  12. J. S. Chickos, S. Hosseini, and D. G. Hesse, Thermochim. Acta 249, 41 (1995).

  13. C. Gobble, N. Rath, and J. Chickos, J. Chem. Eng. Data 58, 2600 (2013).

    Article  CAS  Google Scholar 

  14. D. D. Derrin, W. L. F. Armarego, and D. R. Perrin, Purification of Laboratory Chemicals (Pergamon, Oxford, 1980).

    Google Scholar 

  15. K. V. Zaitseva, M. A. Varfolomeev, and B. N. Solomonov, Thermochim. Acta 535, 8 (2012).

    Article  CAS  Google Scholar 

  16. K. V. Zaitseva, M. A. Varfolomeev, V. B. Novikov, and B. N. Solomonov, J. Chem. Thermodyn. 43, 1083 (2011).

    Article  CAS  Google Scholar 

  17. D. Hallén, S.-O. Nilsson, W. Rothschild, and I. Wadsö, J. Chem. Thermodyn. 18, 429 (1986).

    Article  Google Scholar 

  18. R. Sabbah, A. Xu-Wu, J. S. Chickos, et al., Thermochim. Acta 331, 93 (1999).

    Article  CAS  Google Scholar 

  19. T. C. Tran, G. A. Logan, E. Grosjean, et al., Org. Geochem. 37, 1190 (2006).

    Article  CAS  Google Scholar 

  20. B. N. Solomonov, M. A. Varfolomeev, R. N. Nagrimanov, et al., Thermochim. Acta 589, 164 (2014).

    Article  CAS  Google Scholar 

  21. M. I. Yagofarov, R. N. Nagrimanov, and B. N. Solomonov, Thermochim. Acta 646, 26 (2016).

    Article  CAS  Google Scholar 

  22. M. A. V. Ribeiro da Silva, A. I. M. C. Lobo Ferreira, A. F. L. O. M. Santos, et al., J. Chem. Thermodyn. 42, 371 (2010).

    Article  CAS  Google Scholar 

  23. B. N. Solomonov and M. I. Yagofarov, J. Mol. Liq. 319, 114330 (2020).

  24. A. L. R. Silva, V. L. S. Freitas, and M. D. M. C. R. da Silva, Chemosphere 107, 203 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. M. A. V. R. da Silva, M. L. C. C. H. Farrão, and A. J. M. Lopes, J. Chem. Thermodyn. 25, 229 (1993).

    Article  Google Scholar 

  26. D. Ferro, V. Piacente, and M. Pelino, Rev. Roum. Chim. 26, 9 (1981).ćtion=getRecordDetailandidt=PASCAL8130198585

  27. S. P. Verevkin, M. Georgieva, and S. V. Melkhanova, J. Chem. Eng. Data 52, 286 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. S. Abdullah.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, R.S. Phase Transition Thermodynamics: Evaporation Enthalpy of 13 Naphthalene Derivatives. Russ. J. Phys. Chem. 97, 1361–1367 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: