Skip to main content
Log in

Theoretical Description of Relativistic Terms of a Hydrogen Atom in a Magnetic Field: A Variational Approach in the Basis of Hydrogen-Like Spinors

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The incomplete diagonalization of a Dirac Hamiltonian in the basis of the states of an unperturbed atom is used to obtain solutions to the Dirac equation for a hydrogen atom in a constant uniform magnetic field and a wide range of changes in strength. The resulting finite expressions for the matrix elements of the perturbation operator of an arbitrary hydrogen-like atom are used to estimate the action of operators in minimizing the energy dispersion functional. The approach allows precise estimates of the energy of the ground state and values of the energies of transition that are in good agreement with results from earlier studies. It is shown that the proposed technique for minimizing the energy dispersion functional allows the incomplete diagonalization of operators for an arbitrarily chosen block of target states, provided that the initial approximation is correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. H. Ruder, G. Wunner, H. Herold, and F. Geyer, Atoms in Strong Magnetic Fields (Springer, Berlin, 1994).

    Book  Google Scholar 

  2. P. Zeeman, Nature (London, U.K.) 55 (1424), 347 (1897).

    Article  Google Scholar 

  3. A. Holle, G. Wiebusch, J. Main, et al., Phys. Rev. Lett. 56, 2594 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. J. Main, G. Wiebusch, A. Holle, and K. H. Welge, Phys. Rev. Lett. 57, 2789 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. A. Holle, J. Main, G. Wiebusch, et al., Phys. Rev. Lett. 61, 161 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Iu Chun-ho, G. R. Welch, M. M. Kash, et al., Phys. Rev. Lett. 66, 145 (1991).

    Article  Google Scholar 

  7. G. R. Welch, M. M. Kash, Iu Chun-ho, et al., Phys. Rev. Lett. 62, 893 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Y. Yafet, R. W. Keyes, and E. N. Adams, J. Phys. Chem. Solids 1, 137 (1956).

    Article  Google Scholar 

  9. R. J. Elliott and R. Loudon, J. Phys. Chem. Solids 15, 196 (1960).

    Article  CAS  Google Scholar 

  10. D. Cabib, E. Fabri, and G. Fiorio, Nuovo Cim. B 10, 185 (1972).

    Article  Google Scholar 

  11. M. Ruderman, Ann. Rev. Astron. Astrophys. 10, 427 (1972).

    Article  Google Scholar 

  12. J. C. Kemp, J. B. Swedlund, J. D. Landstreet, and J. R. P. Angel, Astrophys. J. 161, L77 (1970).

    Article  Google Scholar 

  13. R. H. Garstang, Rep. Prog. Phys. 40, 105 (1977).

    Article  CAS  Google Scholar 

  14. A. Lasenby, C. Doran, J. Pritchard, et al., Phys. Rev. D 72, 105014 (2005).

  15. G. D. Schmidt, R. G. Allen, P. S. Smith, and J. Liebert, Astrophys. J. 463, 320 (1996).

    Article  Google Scholar 

  16. D. Lai, Rev. Mod. Phys. 73, 629 (2001).

    Article  CAS  Google Scholar 

  17. K. Mori and W. C. G. Ho, Mon. Not. R. Astron. Soc. 77, 905 (2007).

    Article  Google Scholar 

  18. R. C. Duncan and C. Thompson, Astrophys. J. 392, L9 (1992).

    Article  CAS  Google Scholar 

  19. C. Kouveliotou, S. Dieters, T. Strohmayer, et al., Nature (London, U.K.) 393, 235 (1998).

    Article  CAS  Google Scholar 

  20. H. C. Praddaude, Phys. Rev. A 6, 1321 (1972).

    Article  CAS  Google Scholar 

  21. H. Friedrich, Phys. Rev. A 26, 1827 (1982).

    Article  CAS  Google Scholar 

  22. C.-R. Liu and A. F. Starace, Phys. Rev. A 35, 647 (1987).

    Article  CAS  Google Scholar 

  23. A. R. P. Rau and L. Spruch, Astrophys. J. 207, 671 (1976).

    Article  CAS  Google Scholar 

  24. W. Rosner, G. Wunner, H. Herold, and H. Ruder, J. Phys. B: At. Mol. Phys. 17, 29 (1984).

    Article  Google Scholar 

  25. H. Forster, W. Strupat, W. Rosner, et al., J. Phys. B: At. Mol. Phys. 17, 1301 (1984).

    Article  CAS  Google Scholar 

  26. C. R. Handy, D. Bessis, G. Sigismondi, and T. D. Morley, Phys. Rev. Lett. 60, 253 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. J. Shertzer, Phys. Rev. A 39, 3833 (1989).

    Article  CAS  Google Scholar 

  28. G. Fonte, P. Falsaperla, G. Schiffrer, and D. Stanzial, Phys. Rev. A 41, 5807 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. C. Stubbins, K. Das, and Y. Shiferaw, J. Phys. B: At. Mol. Opt. Phys. 37, 2201 (2004).

    Article  CAS  Google Scholar 

  30. K. A. U. Lindgren and J. T. Virtamo, J. Phys. B: At. Mol. Opt. Phys. 12, 3465 (1979).

    Article  CAS  Google Scholar 

  31. N. L. Manakov, L. P. Rapoport, and S. A. Zapryagaev, J. Phys. B: At. Mol. Opt. Phys. 7, 1076 (1974).

    Article  CAS  Google Scholar 

  32. R. Szmytkowski, Phys. Rev. A 65, 032314 (2002).

  33. A. Poszwa and A. Rutkowski, Phys. Rev. A 69, 062320 (2004).

  34. A. Rutkowski, J. Phys. B: At. Mol. Phys. 19, 149 (1986).

    Article  CAS  Google Scholar 

  35. Z. Chen and S. Goldman, Phys. Rev. A 44, 4459 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Z. Chen and S. Goldman, Phys. Rev. A 45, 1722 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. S. Goldman and Z. Chen, Phys. Rev. Lett. 67, 1403 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Z. Chen, G. Fonte, and S. Goldman, Phys. Rev. A 50, 3838 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. R. N. Hill and C. Krauthauser, Phys. Rev. Lett. 72, 2151 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. D. L. Weaver, J. Math. Phys. 18, 306 (1977).

    Article  Google Scholar 

  41. R. A. Swainson and G. W. F. Drake, J. Phys. A: Math. Gen. 24, 79 (1991).

    Article  CAS  Google Scholar 

  42. W. Kutzelnigg, Chem. Phys. 395, 16 (2012).

    Article  CAS  Google Scholar 

  43. S. Sun, T. F. Stetina, T. Zhang, et al., J. Chem. Theory Comput. 17, 3388 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. J.-L. Chen, D.-L. Deng, and M.-G. Hu, Phys. Rev. A 77, 034102 (2008).

  45. C. Lanczos, J. Res. Natl. Bureau Stand. 45, 255 (1950).

    Article  Google Scholar 

  46. B. R. Judd, Operator Techniques in Atomic Spectroscopy (McGraw-Hill, New York, 1963), p. 82.

    Google Scholar 

Download references

Funding

This work was performed under grant no. 22-23-01180 from the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Ozerov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozerov, G.K., Bodunov, A.A. & Bezrukov, D.S. Theoretical Description of Relativistic Terms of a Hydrogen Atom in a Magnetic Field: A Variational Approach in the Basis of Hydrogen-Like Spinors. Russ. J. Phys. Chem. 97, 1509–1514 (2023). https://doi.org/10.1134/S0036024423070208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423070208

Keywords:

Navigation