Abstract
The thermodynamic and kinetic characteristics of cerium(IV)–citrate complexes formed at the first step of oxidation of citric acid with cerium(IV) are studied via spectrophotometric, pH-metric, and kinetic means at an ionic strength of I = 2 in the 1–3 range of the pH of a sulfuric acid medium at T = 290.15–303.15 K. The composition of these complexes, the species of the organic ligand in them, the thermodynamic parameters of their formation, and the kinetic parameters of the intracomplex redox decomposition are determined. The most likely scheme of the initial steps of the redox process in the system are considered, and its rate law and the related mechanism of the reaction are established. Results are compared to ones from studies of other cerium(IV) systems with hydroxy and dicarboxylic acids.
Similar content being viewed by others
Notes
The formula \({\text{CeOH}}({{{\text{H}}}_{{2 - x}}}{\text{Citr}})_{n}^{{3 - nx}}\) was recommended [41] to be considered as an abridged notation of the overall formula \({{({\text{CeOH}})}_{m}}({\text{Citr}})_{{nm}}^{{(3 - 2n)m}}\) (n, m = 1, 2). This overall complex can be a mixture of species or one of the species that predominates in the mixture.
Note that the −logk1 and E1, kJ/mol of the complexes with the anions of dicarboxylic acids (oxalic acid \({\text{O}}{{{\text{x}}}^{{2 - }}}\), malonic acid \({\text{Mal}}{{{\text{n}}}^{{2 - }}}\)) [23, 28] are much lower than the corresponding ones for complexes with hydroxy acids (Fig. 5), which agrees with Sengupta’s observations [32]. Figure 5 presents the values of ‒logk1 after recalculating to T = 278.15 K using the corresponding values of E1, kJ/mol.
REFERENCES
J. Zhang, M. Wenzel, K. Schnaars, et al., Dalton Trans. 50, 3550 (2021).https://doi.org/10.1039/D1DT00365H
J. Jacobsen, L. Wegner, H. Reinsch, et al., Dalton Trans. 49, 11396 (2020). https://doi.org/10.1039/D0DT02455D
T. O. Kozlova, A. E. Baranchikov, and V. K. Ivanov, Russ. J. Inorg. Chem. 66, 1761 (2021). https://doi.org/10.1134/S003602362112010X
S. I. Lopatin, S. M. Shugurov, and O. Y. Kurapova, Russ. J. Gen. Chem. 91, 2008 (2021). https://doi.org/10.1134/S1070363221100121
G. Issa, M. Dimitrov, R. Ivanova, et al., React. Kinet. Mech. Catal. 135, 105 (2022). https://doi.org/10.1007/s11144-021-02135-0
F. Dalanta and T. D. Kusworo, Chem. Eng. J. 434, 134687 (2022). https://doi.org/10.1016/j.cej.2022.134687
I. Colliard and M. Nyman, Angew. Chem. Int. Ed. 60, 7308 (2021). https://doi.org/10.1002/anie.202016522
K. Wadekar, S. Aswaleb, and V. R. Yatham, Org. Biomol. Chem. 18, 983 (2020). https://doi.org/10.1039/C9OB02676B
G. S. Yedase, S. Kumar, J. Stahl, et al., Beilstein J. Org. Chem. 17, 1727 (2021). https://doi.org/10.3762/bjoc.17.121
G. Ragukumar and O. Nethaji, Indian J. Natur. Sci. 12, 36350 (2021).
R. Ciriminna, F. Meneguzzo, R. Delisi, et al., Chem. Centr. J. 11, 22 (2017). https://doi.org/10.1186/s13065-017-0251-y
K. Duangsa, A. Tangtrakarn, C. Mongkolkachit, et al., Adv. Mater. Sci. Eng., 5592437 (2021). https://doi.org/10.1155/2021/5592437
Y. Bao, J. Ma, Ch. Pan, et al., Chemosphere 240, 124897 (2020). https://doi.org/10.1016/j.chemosphere.2019.124897
S. H. Zhang, B. Yang, M. D. Li, et al., Key Eng. Mater. 814, 144 (2019). https://doi.org/10.4028/www.scientific.net/KEM.814.144
Y. Wu, H. Li, X. Bian, et al., Materials 14, 4963 (2021).
V. G. Taran, L. V. Borovskaya, and E. A. Mazurenko, Nauch. Obozr., No. 2, 24 (2019).
V. P. Vasil’ev, Analytical Chemistry, Part 1: Gravimetric and Titrimetric Methods of Analysis (Vyssh. Shkola, Moscow, 1989) [in Russian].
D. Marunkić, J. Pejić, B. Jegdić, et al., Mater. Corros. 73, 950 (2022).
A. B. Zherbakov, N. M. Zholobak, and V. K. Ivanov, Cerium Oxide (CeO 2 ): Synthesis, Properties, and Applications, Ed. by S. Scire and M. Palmisano (Elsevier, Amsterdam, 2019).
M. L. Hancock, R. A. Yokel, M. J. Beck, et al., Appl. Surf. Sci. 535, 147681 (2021). https://doi.org/10.1016/j.apsusc.2020.147681
CAS No. 1306-383 (Enviromental Protection Agency, Washington, DC, 2009).
A. Cassani, A. Monteverde, and M. Piumetti, J. Math. Chem. 59, 792 (2021).
O. O. Voskresenskaya and N. A. Skorik, Russ. J. Phys. Chem. A 89, 1821 (2015).
Ž. Čupić and G. Lente, React. Kinet. Mech. Catal. 135, 1137 (2022).
F. Muzika and J. Górecki, React. Kinet. Mech. Catal. 135, 1187 (2022).
G. T. Kasperek and T. C. Bruice, Inorg. Chem. 10, 382 (1971).
M. Rustici, R. Lombardo, M. Mangone, et al., Faraday Discuss. 120, 47 (2001).
O. O. Voskresenskaya, N. A. Skorik, and Yu. V. Yuzhakova, Russ. J. Phys. Chem. A 91, 627 (2017).
D. Nebel and G. Urban, Z. Phys. Chem. (DDR) 233, 73 (1966).
N. I. Pechurova, G. P. Vakhramova, and V. I. Spitsyn, Zh. Neorg. Khim. 19, 2074 (1974).
O. O. Voskresenskaya and N. A. Skorik, Russ. J. Phys. Chem. A 83, 945 (2009).
K. K. Sengupta, Bull. Chem. Soc. Jpn., No. 2, 298 (1969).
S. N. Tripathy and R. K. Prasad, Indian J. Chem., Sect. A 19, 214 (1980).
N. Datt, R. Nagori, and R. Mehrotra, Can. J. Chem. A 64, 19 (1986).
A. R. Felmy, H. Cho, D. A. Dixon, et al., Radiochim. Acta 94, 205 (2006).
P. Thuéry, Cryst. Eng. Commun. 10, 79 (2008).
N. A. Dobrynina and L. I. Martynenko, Problems of Modern Chemistry of Coordination Compounds, Ed. by K. A. Burkov (LGU, Leningrad, 1989), p. 98 [in Russian].
A. E. Martell, R. M. Smith, and R. J. Motekaitis, NIST Critically Selected Stability Constants of Metal Complexes, Database, Version 8.0 (Natl. Inst. Standards Technol., Gaithersburg, 2004).
K. Binnemans, Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner (Elsevier, Amsterdam, 2006), Vol. 36, p. 281.
R. S. Singh, P. N. Jha, and R. K. Prasad, Proc. Natl. Sci. 57 (3), 272 (1987).
T. G. Hardwich and E. Robertson, Can. J. Chem. A 29, 818 (1955).
Yu. K. Atroshenko, Optimization of Static and Dynamic Modes (TPU, Tomsk, 2019), p. 2 [in Russian].
O. O. Voskresenskaya and N. A. Skorik, Russ. J. Appl. Chem. 75, 866 (2002).
O. O. Voskresenskaya, N. A. Skorik, and N. I. Sokovikova, Russ. J. Inorg. Chem. 64, 511 (2019).
K. B. Yatsimirskii, N. A. Kostromina, et al., Chemistry of Rare-Earth Complexes (Naukova Dumka, Kiev, 1966) [in Russian].
B. M. Casari and V. Lander, Acta Crystallogr., Sect. C 63 (4), i25 (2007).
N. A. Skorik and E. B. Chernov, Calculations Using Personal Computers in the Chemistry of Complex Compounds (TGU, Tomsk, 2009) [in Russian].
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by V. Glyanchenko
Rights and permissions
About this article
Cite this article
Voskresenskaya, O.O., Skorik, N.A. Thermodynamics of the Formation of Intermediate Complexes in the Oxidation of Citric Acid with Cerium(IV) and the Kinetics of Their Intramolecular Redox Decomposition. Russ. J. Phys. Chem. 97, 663–671 (2023). https://doi.org/10.1134/S0036024423040325
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0036024423040325