Skip to main content
Log in

Thermodynamics of the Formation of Intermediate Complexes in the Oxidation of Citric Acid with Cerium(IV) and the Kinetics of Their Intramolecular Redox Decomposition

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The thermodynamic and kinetic characteristics of cerium(IV)–citrate complexes formed at the first step of oxidation of citric acid with cerium(IV) are studied via spectrophotometric, pH-metric, and kinetic means at an ionic strength of I = 2 in the 1–3 range of the pH of a sulfuric acid medium at T = 290.15–303.15 K. The composition of these complexes, the species of the organic ligand in them, the thermodynamic parameters of their formation, and the kinetic parameters of the intracomplex redox decomposition are determined. The most likely scheme of the initial steps of the redox process in the system are considered, and its rate law and the related mechanism of the reaction are established. Results are compared to ones from studies of other cerium(IV) systems with hydroxy and dicarboxylic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. The formula \({\text{CeOH}}({{{\text{H}}}_{{2 - x}}}{\text{Citr}})_{n}^{{3 - nx}}\) was recommended [41] to be considered as an abridged notation of the overall formula \({{({\text{CeOH}})}_{m}}({\text{Citr}})_{{nm}}^{{(3 - 2n)m}}\) (n, m = 1, 2). This overall complex can be a mixture of species or one of the species that predominates in the mixture.

  2. Note that the −logk1 and E1, kJ/mol of the complexes with the anions of dicarboxylic acids (oxalic acid \({\text{O}}{{{\text{x}}}^{{2 - }}}\), malonic acid \({\text{Mal}}{{{\text{n}}}^{{2 - }}}\)) [23, 28] are much lower than the corresponding ones for complexes with hydroxy acids (Fig. 5), which agrees with Sengupta’s observations [32]. Figure 5 presents the values of ‒logk1 after recalculating to T = 278.15 K using the corresponding values of E1, kJ/mol.

REFERENCES

  1. J. Zhang, M. Wenzel, K. Schnaars, et al., Dalton Trans. 50, 3550 (2021).https://doi.org/10.1039/D1DT00365H

    Article  CAS  PubMed  Google Scholar 

  2. J. Jacobsen, L. Wegner, H. Reinsch, et al., Dalton Trans. 49, 11396 (2020). https://doi.org/10.1039/D0DT02455D

    Article  CAS  PubMed  Google Scholar 

  3. T. O. Kozlova, A. E. Baranchikov, and V. K. Ivanov, Russ. J. Inorg. Chem. 66, 1761 (2021). https://doi.org/10.1134/S003602362112010X

    Article  CAS  Google Scholar 

  4. S. I. Lopatin, S. M. Shugurov, and O. Y. Kurapova, Russ. J. Gen. Chem. 91, 2008 (2021). https://doi.org/10.1134/S1070363221100121

    Article  CAS  Google Scholar 

  5. G. Issa, M. Dimitrov, R. Ivanova, et al., React. Kinet. Mech. Catal. 135, 105 (2022). https://doi.org/10.1007/s11144-021-02135-0

    Article  CAS  Google Scholar 

  6. F. Dalanta and T. D. Kusworo, Chem. Eng. J. 434, 134687 (2022). https://doi.org/10.1016/j.cej.2022.134687

  7. I. Colliard and M. Nyman, Angew. Chem. Int. Ed. 60, 7308 (2021). https://doi.org/10.1002/anie.202016522

    Article  CAS  Google Scholar 

  8. K. Wadekar, S. Aswaleb, and V. R. Yatham, Org. Biomol. Chem. 18, 983 (2020). https://doi.org/10.1039/C9OB02676B

    Article  CAS  PubMed  Google Scholar 

  9. G. S. Yedase, S. Kumar, J. Stahl, et al., Beilstein J. Org. Chem. 17, 1727 (2021). https://doi.org/10.3762/bjoc.17.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. G. Ragukumar and O. Nethaji, Indian J. Natur. Sci. 12, 36350 (2021).

    Google Scholar 

  11. R. Ciriminna, F. Meneguzzo, R. Delisi, et al., Chem. Centr. J. 11, 22 (2017). https://doi.org/10.1186/s13065-017-0251-y

    Article  CAS  Google Scholar 

  12. K. Duangsa, A. Tangtrakarn, C. Mongkolkachit, et al., Adv. Mater. Sci. Eng., 5592437 (2021). https://doi.org/10.1155/2021/5592437

  13. Y. Bao, J. Ma, Ch. Pan, et al., Chemosphere 240, 124897 (2020). https://doi.org/10.1016/j.chemosphere.2019.124897

  14. S. H. Zhang, B. Yang, M. D. Li, et al., Key Eng. Mater. 814, 144 (2019). https://doi.org/10.4028/www.scientific.net/KEM.814.144

    Article  Google Scholar 

  15. Y. Wu, H. Li, X. Bian, et al., Materials 14, 4963 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. V. G. Taran, L. V. Borovskaya, and E. A. Mazurenko, Nauch. Obozr., No. 2, 24 (2019).

  17. V. P. Vasil’ev, Analytical Chemistry, Part 1: Gravimetric and Titrimetric Methods of Analysis (Vyssh. Shkola, Moscow, 1989) [in Russian].

    Google Scholar 

  18. D. Marunkić, J. Pejić, B. Jegdić, et al., Mater. Corros. 73, 950 (2022).

    Article  Google Scholar 

  19. A. B. Zherbakov, N. M. Zholobak, and V. K. Ivanov, Cerium Oxide (CeO 2 ): Synthesis, Properties, and Applications, Ed. by S. Scire and M. Palmisano (Elsevier, Amsterdam, 2019).

    Google Scholar 

  20. M. L. Hancock, R. A. Yokel, M. J. Beck, et al., Appl. Surf. Sci. 535, 147681 (2021). https://doi.org/10.1016/j.apsusc.2020.147681

  21. CAS No. 1306-383 (Enviromental Protection Agency, Washington, DC, 2009).

  22. A. Cassani, A. Monteverde, and M. Piumetti, J. Math. Chem. 59, 792 (2021).

    Article  CAS  Google Scholar 

  23. O. O. Voskresenskaya and N. A. Skorik, Russ. J. Phys. Chem. A 89, 1821 (2015).

    Article  CAS  Google Scholar 

  24. Ž. Čupić and G. Lente, React. Kinet. Mech. Catal. 135, 1137 (2022).

    Article  Google Scholar 

  25. F. Muzika and J. Górecki, React. Kinet. Mech. Catal. 135, 1187 (2022).

    Article  CAS  Google Scholar 

  26. G. T. Kasperek and T. C. Bruice, Inorg. Chem. 10, 382 (1971).

    Article  Google Scholar 

  27. M. Rustici, R. Lombardo, M. Mangone, et al., Faraday Discuss. 120, 47 (2001).

    Google Scholar 

  28. O. O. Voskresenskaya, N. A. Skorik, and Yu. V. Yuzhakova, Russ. J. Phys. Chem. A 91, 627 (2017).

    Article  CAS  Google Scholar 

  29. D. Nebel and G. Urban, Z. Phys. Chem. (DDR) 233, 73 (1966).

    Article  CAS  Google Scholar 

  30. N. I. Pechurova, G. P. Vakhramova, and V. I. Spitsyn, Zh. Neorg. Khim. 19, 2074 (1974).

    CAS  Google Scholar 

  31. O. O. Voskresenskaya and N. A. Skorik, Russ. J. Phys. Chem. A 83, 945 (2009).

    Article  CAS  Google Scholar 

  32. K. K. Sengupta, Bull. Chem. Soc. Jpn., No. 2, 298 (1969).

  33. S. N. Tripathy and R. K. Prasad, Indian J. Chem., Sect. A 19, 214 (1980).

    Google Scholar 

  34. N. Datt, R. Nagori, and R. Mehrotra, Can. J. Chem. A 64, 19 (1986).

    Article  CAS  Google Scholar 

  35. A. R. Felmy, H. Cho, D. A. Dixon, et al., Radiochim. Acta 94, 205 (2006).

    Article  CAS  Google Scholar 

  36. P. Thuéry, Cryst. Eng. Commun. 10, 79 (2008).

    Article  Google Scholar 

  37. N. A. Dobrynina and L. I. Martynenko, Problems of Modern Chemistry of Coordination Compounds, Ed. by K. A. Burkov (LGU, Leningrad, 1989), p. 98 [in Russian].

    Google Scholar 

  38. A. E. Martell, R. M. Smith, and R. J. Motekaitis, NIST Critically Selected Stability Constants of Metal Complexes, Database, Version 8.0 (Natl. Inst. Standards Technol., Gaithersburg, 2004).

    Google Scholar 

  39. K. Binnemans, Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner (Elsevier, Amsterdam, 2006), Vol. 36, p. 281.

    Google Scholar 

  40. R. S. Singh, P. N. Jha, and R. K. Prasad, Proc. Natl. Sci. 57 (3), 272 (1987).

  41. T. G. Hardwich and E. Robertson, Can. J. Chem. A 29, 818 (1955).

    Article  Google Scholar 

  42. Yu. K. Atroshenko, Optimization of Static and Dynamic Modes (TPU, Tomsk, 2019), p. 2 [in Russian].

    Google Scholar 

  43. O. O. Voskresenskaya and N. A. Skorik, Russ. J. Appl. Chem. 75, 866 (2002).

    Article  CAS  Google Scholar 

  44. O. O. Voskresenskaya, N. A. Skorik, and N. I. Sokovikova, Russ. J. Inorg. Chem. 64, 511 (2019).

    Article  CAS  Google Scholar 

  45. K. B. Yatsimirskii, N. A. Kostromina, et al., Chemistry of Rare-Earth Complexes (Naukova Dumka, Kiev, 1966) [in Russian].

    Google Scholar 

  46. B. M. Casari and V. Lander, Acta Crystallogr., Sect. C 63 (4), i25 (2007).

    Article  CAS  Google Scholar 

  47. N. A. Skorik and E. B. Chernov, Calculations Using Personal Computers in the Chemistry of Complex Compounds (TGU, Tomsk, 2009) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Voskresenskaya.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voskresenskaya, O.O., Skorik, N.A. Thermodynamics of the Formation of Intermediate Complexes in the Oxidation of Citric Acid with Cerium(IV) and the Kinetics of Their Intramolecular Redox Decomposition. Russ. J. Phys. Chem. 97, 663–671 (2023). https://doi.org/10.1134/S0036024423040325

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423040325

Keywords:

Navigation