Skip to main content
Log in

Molecular Structure and Characteristics of Methyl Mercaptan Under External Electric Field

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The reaction of methyl mercaptan (CH3SH) with groups such as OH, O, and SO2 in the air forms acid rain and photochemical smog, which damage the atmosphere seriously. It is found that methyl mercaptan can be degraded effectively by studying its dissociation characteristics of it in an external electric field. The total energy, C–S bond length, HOMO–LUMO energy gap, electric dipole moment, as well as charge distribution, IR spectrum, and dissociation potential energy surface of methyl mercaptan molecule under external electric field (0–12.5 V nm–1) were studied by density functional theory (DFT) at B3LYP/6-311++(d,p) basis set level. Moreover, the UV–Vis absorption spectrum of methyl mercaptan with the external electric field was obtained by CIS/6-311++(d,p) method. The calculation results show that along the direction of the C‒S bond line, the molecular system energy gradually decreases, while the C–S bond length increases gradually. Meanwhile, the dipole moment monotonously decreases with the field, and the HOMO–LUMO energy gap EG monotonically decreases after a slight increase at the beginning with the increase of the field. When the applied external electric field is gradually enhanced, the barrier of the C–S bond of methyl mercaptan molecule is reduced. It shows that when the employed external electric field strength arrives at 21.91 V nm–1, the C–S bond can be broken completely, that is, methyl mercaptan is degraded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. W. E. Luttrell and M. E. Bobo, J. Chem. Heal. Safety 22, 37 (2015).

    Article  Google Scholar 

  2. J. Lu, J. J. Fang, K. X. Li, X. H. Xu, and J. B. Qiao, J. Air Waste Manage. Assoc. 71, 540 (2021).

    Article  Google Scholar 

  3. H. Douroudgar, M. Vahedpour, and S. Mohammadi, Sci. Rep. 10, 18081 (2020).

    Article  Google Scholar 

  4. Z. Zhou, X. Zhang, Y. Liu, and B. Abulimiti, Commun. Theor. Chem. 1207, 113533 (2022).

  5. J. Zhou, Y. H. Jiang, W. H. Li, and X. Y. Liu, J. Environ. Sci. Health 53, 1 (2018).

    Google Scholar 

  6. Xu Wang, L. v. Dan, Lei Sun, Wei Wang, Xu-hang Tu, and Zheng-hao Ma, J. Magn. Magn. Mater. 538, 168259 (2021).

  7. M. A. Castellanos and J. A. Castellanos, Eur. J. Phys. 42, 055401 (2021).

  8. S. Sowlatihashjin, Matta, and F. Chérif, J. Chem. Phys. 139, 144101 (2014).

  9. M. J. Frisch, G. W. Trucks, and H. B. Schlegel, Gaussian 09, Revision D.01 (Gaussian Inc., Wallingford CT, 2009).

    Google Scholar 

  10. T. Nishikawa, J. Phys. Soc. Jpn. 12, 668 (1957).

    Article  CAS  Google Scholar 

  11. Y. G. Sıdır, H. Berber, and F. Demiray, J. Mol. Liq. 206, 56 (2015).

    Article  Google Scholar 

  12. S. Masaoka, Y. Mukawa, and K. Sakai, J. Dalton. Trans. 39, 5868 (2010).

    Article  CAS  Google Scholar 

  13. R. L. Hudson, J. Chem. Phys. 18, 36 (2016).

    Google Scholar 

  14. H. Lin, Y. Z. Liu, W. Y. Yin, Y. H. Yan, L. W. Ma, and Y. R. Jin, J. Theor. Comput. Chem. 4, 1850029 (2018).

  15. Z. H. Du, J. Y. Li, and H. Gao, J. Quant. Spectrosc. Radiat. Transfer 196, 123 (2017).

    Article  CAS  Google Scholar 

  16. C. H. Zhao, D. W. Huang, and J. H. Chen, J. Materiomics 4, 247 (2018).

  17. G. L. Xu, X. F. Liu, H. X. Xie, X. Z. Zhang, and Y. F. Liu, J. Chin. Phys. B 20 (2011).

  18. Z. M. E. Fahim, S. M. Bouzzine, and A. A. Youssef, J. Theor. Comput. Chem. 1125, 39 (2018).

    Article  CAS  Google Scholar 

  19. J. A. Korn, J. Urban, and A. Dang, J. Phys. Chem. Lett. 8, 4100 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. G. Cooper, T. N. Olney, and C. E. Brion, J. Chem. Phys. 194, 175 (1995).

    CAS  Google Scholar 

  21. Experimental IR Spectrum of Methyl Mercaptan, NIST Chemical Kinetic Database (1971). https://webbook.nist.gov/cgi/cbook.cgi?ID=C74931&Units=SI&Mask=400#UV-Vis-Spec

  22. L. C. Owono, N. Jaidane, and M. G. Kwato Njock, J. Chem. Phys. 126, 1737 (2007).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The project is supported by National Natural Science Foundation of China (U1932149). The authors are grateful to Dr. Chaochao Qin for the assistance of the theoretical calculation on Gaussian 09 program performed at Henan Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhu Liu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Oudray, F., Tang, R. et al. Molecular Structure and Characteristics of Methyl Mercaptan Under External Electric Field. Russ. J. Phys. Chem. 97, 119–126 (2023). https://doi.org/10.1134/S0036024423010351

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423010351

Keywords:

Navigation