Skip to main content
Log in

Analisys of Methods for Calculating the Equilibrium Surface Tension of Vapor–Liquid Systems in the Lattice Gas Model

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Definitions of the equilibrium surface tension (ST) existing in thermodynamics are analyzed along with reasons for their ambiguity. A molecular statistical analysis of the concept of equilibrium ST at the vapor–liquid interface is given and a procedure for calculating it within the simplest microscopic model of statistical physics (the lattice gas model) is formulated. Equilibrium ST is shown to be a mechanical characteristic calculated under the condition of a rigorous phase equilibrium over three partial equilibria (mechanical, energy, and chemical). Violation of the chemical equilibrium results in non-equilibrium ST. The emergence of metastable STs is due to the artificial introduction of a foreign film boundary into the model through the Laplace equation, which distorts the real properties of the system. Means of statistical physics for obtaining existing definitions of equilibrium ST in the theory of integral equations for fluids and molecular dynamics are discussed along with a criterion for distinguishing between equilibrium and non-equilibrium STs, metastable and otherwise. Analysis shows that none of the current means of statistical physics ensures correct calculations of equilibrium STs with regard to all molecular features of the considered systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. W. Gibbs, The Collected Works of J. W. Gibbs: In Two Volumes (Longmans, Green and Co., N.Y., 1928), Vol. 1.

  2. V. K. Semenchenko, Surface Phenomena in Metals and Alloys (Moscow, 1957) [in Russian].

    Google Scholar 

  3. S. Ono and S. Kondo, Molecular Theory of Surface Tension in Liquids, Handbuch der Physik (Springer, Berlin, 1960).

    Google Scholar 

  4. A. I. Rusanov, Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967).

    Google Scholar 

  5. A. Adamson, The Physical Chemistry of Surfaces (Wiley, New York, 1976).

    Google Scholar 

  6. M. Jaycock and J. Parfitt, Chemistry of Interfaces (Ellis Horwood, Chichester, UK, 1981).

    Google Scholar 

  7. J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford Univ. Press, Oxford, UK, 1978).

    Google Scholar 

  8. E. D. Shchukin, A. V. Pertsov, and E. A. Amelina, Colloid Chemistry (Vyssh. Shkola, Moscow, 1992) [in Russian].

    Google Scholar 

  9. Yu. K. Tovbin, Small Systems and Fundamentals of Thermodynamics (CRC, Boca Raton, FL, 2018; Fizmatlit, Moscow, 2018).

  10. Physical Encyclopedy (Bol’sh. Ross. Entsikl., Moscow, 1992), Vol. 3 [in Russian].

  11. L. I. Sedov, Mechanics of Continuous Media (Nauka, Moscow, 1970; World Scientific, Singapore, 1997), Vol. 1.

  12. I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans Green, London, 1954).

    Google Scholar 

  13. F. P. Buff, J. Chem. Phys. 23, 419 (1955).

    Article  CAS  Google Scholar 

  14. S. Kondo, J. Chem. Phys. 25, 662 (1956).

    Article  CAS  Google Scholar 

  15. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 1045 (2018).

    Article  CAS  Google Scholar 

  16. O. K. Rice, J. Phys. Chem. 31, 207 (1927).

    Article  CAS  Google Scholar 

  17. I. Prigogine and R. Defay, J. Chim. Phys. Phys.-Chim. Biol. 46, 367 (1949).

    Article  CAS  Google Scholar 

  18. Yu. K. Tovbin, The Molecular Theory of Adsorption in Porous Solids (Fizmatlit, Moscow, 2012; CRC, Boca Raton, FL, 2017).

  19. P. C. Carman, Flow of Gases through Porous Media (Butterworths, London, 1956).

    Google Scholar 

  20. D. P. Timofeev, Kinetics of Adsorbtion (Akad. Nauk SSSR, Moscow, 1962) [in Russian].

    Google Scholar 

  21. S. J. Gregg and K. G. W. Sing, Adsorption, Surface Area, and Porosity (Academic, London, 1982).

    Google Scholar 

  22. D. M. Ruthven, Principles of Adsorption and Adsorption Processes (Wiley, New York, 1984).

    Google Scholar 

  23. T. G. Plachenov and S. D. Kolosentsev, Porosimetry (Khimiya, Leningrad, 1988) [in RUssian].

    Google Scholar 

  24. L. I. Heifets and A. V. Neimark, Multiphase Processes in Porous Media (Khimiya, Moscow, 1982).

    Google Scholar 

  25. Ya. I. Frenkel’, Kinetic Theory of Liquids (Akad. Nauk SSSR, Moscow, 1945; Oxford Univ., London, 1946).

  26. Chemical Encyclopedy (Bol’sh. Ross. Entsikl., Moscow, 1992), Vol. 3, p. 590 [in Russian].

  27. V. M. Vorotyntsev, Nanoparticles in Two-Phase Systems (Izvestiya, Moscow, 2010) [in Russian].

    Google Scholar 

  28. I. P. Suzdalev, Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  29. Yu. K. Tovbin and A. B. Rabinovich, Russ. Chem. Bull. 58, 2193 (2009).

    Article  CAS  Google Scholar 

  30. Yu. K. Tovbin and A. B. Rabinovich, Russ. Chem. Bull. 59, 677 (2010).

    Article  CAS  Google Scholar 

  31. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 2424 (2018).

    Article  CAS  Google Scholar 

  32. Yu. K. Tovbin, Russ. J. Phys. Chem. A 93, 1662 (2019).

    Article  CAS  Google Scholar 

  33. C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).

    Article  CAS  Google Scholar 

  34. T. L. Hill, Statistical Mechanics. Principles and Selected Applications (McGraw-Hill, New York, 1956).

    Google Scholar 

  35. K. Huang, Statistical Mechanics (Wiley, New York, 1963).

    Google Scholar 

  36. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1964; Pergamon, Oxford, 1980).

  37. E. S. Zaitseva and Yu. K. Tovbin, Russ. J. Phys. Chem. A 96, 2088 (2022).

  38. Yu. K. Tovbin, Theory of Physicochemical Processes at the Gas–Solid Interface (Nauka, Moscow, 1990; CRC, Boca Raton, FL, 1991).

  39. Yu. K. Tovbin, Russ. J. Phys. Chem. A 80, 1554 (2006).

    Article  CAS  Google Scholar 

  40. L. Onsager, Phys. Rev. 65, 117 (1944).

    Article  CAS  Google Scholar 

  41. C. Domb, Adv. Phys. 9, 149 (1960).

    Article  CAS  Google Scholar 

  42. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Clarendon, Oxford, 1971).

    Google Scholar 

  43. A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  44. Sh. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, MA, 1976).

    Google Scholar 

  45. V. M. Glazov and L. M. Pavlova, Chemical Thermodynamics and Phase Equilibria (Metallurgiya, Moscow, 1981) [in Russian].

    Google Scholar 

  46. S. Ono, Mem. Fac. Eng. Kyusgu Univ 10, 195 (1947).

    CAS  Google Scholar 

  47. J. E. Lane, Aust. J. Chem. 21, 827 (1968).

    Article  CAS  Google Scholar 

  48. E. M. Piotrovskaya and N. A. Smirnova, Kolloidn. Zh. 41, 1134 (1979).

    CAS  Google Scholar 

  49. Yu. K. Tovbin, Kolloidn. Zh. 45, 707 (1983).

    CAS  Google Scholar 

  50. B. N. Okunev, V. A. Kaminskii, and Yu. K. Tovbin, Kolloidn. Zh. 47, 1110 (1985).

    CAS  Google Scholar 

  51. N. A. Smirnova, Molecular Solutions (Khimiya, Leningrad, 1987) [in Russian].

    Google Scholar 

  52. Yu. K. Tovbin, E. S. Zaitseva, and A. B. Rabinovich, Russ. J. Phys. Chem. A 91, 1957 (2017).

    Article  CAS  Google Scholar 

  53. Yu. K. Tovbin and E. S. Zaitseva, High Temp. 56, 366 (2018).

    Article  CAS  Google Scholar 

  54. Yu. K. Tovbin and A. B. Rabinovich, Dokl. Phys. Chem. 422, 234 (2008).

    Article  CAS  Google Scholar 

  55. E. S. Zaitseva and Yu. K. Tovbin, Russ. J. Phys. Chem. A 94, 2534 (2020).

    Article  Google Scholar 

  56. Yu. K. Tovbin, Zh. Fiz. Khim. 66, 1395 (1992).

    CAS  Google Scholar 

  57. Yu. K. Tovbin, Russ. J. Phys. Chem. A 90, 1439 (2016).

    Article  CAS  Google Scholar 

  58. Yu. K. Tovbin, Russ. J. Phys. Chem. A 94, 622 (2020).

    Article  CAS  Google Scholar 

  59. I. D. van der Waals and F. Constamm, Course of Thermostatics (Johann Ambrosius Barth, Leipzig, 1927).

    Google Scholar 

  60. G. Bakker, Kapillaritat und Oberflachenspannung, Vol. 6 of Handbuch der Experimentalphysik (Harms Leipzig, Wien, 1928).

  61. M. Iwamatsu, J. Phys.: Condens. Matter 6, L173 (1994).

    CAS  Google Scholar 

  62. V. G. Baidakov and G. Sh. Boltachev, Zh. Fiz. Khim. 69, 515 (1995).

    CAS  Google Scholar 

  63. M. P. Moody and P. Attard, J. Chem. Phys. 117, 6705 (2002).

    Article  CAS  Google Scholar 

  64. S. He and P. Attard, Phys. Chem. Chem. Phys. 7, 2928 (2005).

    Article  PubMed  CAS  Google Scholar 

  65. D. W. Oxtoby and R. Evans, J. Chem. Phys. 89, 7521 (1988).

    Article  CAS  Google Scholar 

  66. E. A. Arinshtein, Theor. Math. Phys. 148, 1147 (2006).

    Article  Google Scholar 

  67. E. A. Arinshtein, Variational Principle in the Theory of Distribution Functions of Statistical Physics (RKhD, Izhevsk, 2008) [in Russian].

  68. T. V. Bykov and A. K. Shchekin, Inorg. Mater. 35, 641 (1999).

    Google Scholar 

  69. T. V. Bykov and A. K. Shchekin, Colloid. J. 61, 144 (1999).

    CAS  Google Scholar 

  70. T. V. Bykov, J. Chem. Phys. 111, 3705 (1999).

    Article  CAS  Google Scholar 

  71. T. V. Bykov, J. Chem. Phys. 111, 10602 (1999).

    Article  CAS  Google Scholar 

  72. S. M. Thompson, K. E. Gubbins, J. P. R. Walton, et al., J. Chem. Phys. 81, 530 (1984).

    Article  CAS  Google Scholar 

  73. D. I. Zhukhovitskii, Colloid. J. 65, 440 (2003).

    Article  CAS  Google Scholar 

  74. C. Appert, V. Pot, and S. Zaleski, Fields Inst. Commun. 6, 1 (1996).

    Google Scholar 

  75. K. Ebihara and T. Watanabe, Eur. Phys. J. B 18, 319 (2000).

    Article  CAS  Google Scholar 

  76. I. Z. Fisher, Statistical Theory of Liquids (Chicago Univ., Chicago, 1964).

    Google Scholar 

  77. C. A. Croxton, Liquid State Physics: A Statistical Mechanical Introduction (Cambridge Univ. Press, Cambridge, 1974).

    Book  Google Scholar 

  78. E. A. Arinshteyn, J. Stat. Phys. 144, 831 (2011). https://doi.org/10.10077/s10955-011-0275y

    Article  Google Scholar 

  79. E. A. Arinshtein, Russ. J. Phys. Chem. A 96, 1386 (2022).

  80. Yu. K. Tovbin, Russ. J. Phys. Chem. A 95, 1764 (2021).

    Article  CAS  Google Scholar 

  81. Yu. K. Tovbin, Russ. J. Phys. Chem. A 96, 1363 (2022).

  82. N. N. Bogolyubov, Problems of Dynamical Theory in Statistical Physics (Gostekhteorizdat, Moscow, 1946; Intersci., New York, 1962).

  83. G. A. Martynov, Classical Statistical Physics. Fluid Theory (Intellekt, Dolgoprudnyi, 2011) [in Russian].

  84. F. P. Buff, Zs. Electrochem. 56, 311 (1952).

  85. A. G. McLellan, Proc. R. Soc. London, Ser. A 213, 274 (1952).

    Article  CAS  Google Scholar 

  86. A. Harasima, J. Phys. Soc. Jpn. 8, 343 (1953).

    Article  Google Scholar 

  87. M. J. Abraham, D. van der Spoel, E. Lindahl, B. Hess, and the GROMACS Development Team, GROMACS User Manual, Vers. 2018 (2018). www.gromacs.org.

  88. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  89. I. N. Zryakov and N. K. Bolotin, Teplofiz. Vys. Temp. 14, 63 (1976).

    Google Scholar 

  90. V. M. Zamalin, G. E. Norman, and V. S. Filinov, The Monte Carlo Method in the Statistical Thermodynamics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  91. S. V. Shevkunov, Colloid. J. 67, 497 (2005).

    Article  CAS  Google Scholar 

  92. S. V. Shevkunov, Colloid. J. 81, 311 (2019).

    Article  CAS  Google Scholar 

  93. Yu. K. Tovbin and E. S. Zaitseva, Russ. J. Phys. Chem. A 93, 1842 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed as part of State Task no. 44.2 (basic research) for the Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovbin, Y.K. Analisys of Methods for Calculating the Equilibrium Surface Tension of Vapor–Liquid Systems in the Lattice Gas Model. Russ. J. Phys. Chem. 96, 2318–2328 (2022). https://doi.org/10.1134/S0036024422110322

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422110322

Keywords:

Navigation