Skip to main content
Log in

Electrochemical Deposition of Au/Ag Nanostructure for the Catalytic Reduction of p-Nitrophenol

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Noble metal bimetallic nanostructures, such as Ag and Au, are used in a variety of fields including nanoscience, catalysis, electronics and nanotechnology because of high stability and adsorption rate etc. However controlled synthesis of bimetallic nanostructures is challenging. Therefore, the current study emphasizes on two step controlled synthesis of Au/Ag nanostructures with tunable sizes for catalytic purposes. Using electrochemical deposition (EC) technique, the fabrication of Au/Ag nanostructures were achieved in two stages, through galvanic reaction. The catalytic capabilities of an Au/Ag nanostructure and Ag flower-like structure were examined through reduction of p-nitrophenol in the presence of sodium borohydride (NaBH4). The catalytic investigation was measured in temperatures rage of 25 to 45°C at constant time. The study shows that catalytic activity of Au/Ag nanostructure is higher than that of Ag flower-like structure in the reduction of p-nitrophenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Guha, S. Roy, and A. Banerjee, Langmuir 27, 13198 (2011).

    Article  PubMed  CAS  Google Scholar 

  2. U. Sanyal, D. T. Davis, and B. R. Jagirdar, Dalton Trans. 42, 7147 (2013).

    Article  PubMed  CAS  Google Scholar 

  3. A. Zaleska-Medynska, M. Marchelek, M. Diak, and E. Grabowska, Adv. Colloid Interface Sci. 229, 80 (2016).

    Article  PubMed  CAS  Google Scholar 

  4. P. Yuan, R. Ma, N. Gao, M. Garai, and Q. H. Xu, Nanoscale 7, 10233 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. C. F. Hsia, M. Madasu, and M. H. Huang, Chem. Mater. 28, 3073 (2016).

    Article  CAS  Google Scholar 

  6. M. Tsuji, S. Hikino, R. Tanabe, and D. Yamaguchi, Chem. Lett. 39, 334 (2010).

    Article  CAS  Google Scholar 

  7. Y. Cao, R. Jin, and C. A. Mirkin, J. Am. Chem. Soc. 123, 7961 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. D. S. Sheny, J. Mathew, and D. Philip, Spectrochim. Acta, Part A 79, 254 (2011).

    Article  CAS  Google Scholar 

  9. A. Monga and B. Pal, New J. Chem. 39, 304 (2015).

    Article  CAS  Google Scholar 

  10. J. Zeng, Y. Cao, C. H. Lu, X. D. Wang, Q. Wang, C. Y. Wen, J. B. Qu, C. Yuan, Z. F. Yan, and X. Chen, Anal. Chim. Acta 891, 269 (2015).

    Article  PubMed  CAS  Google Scholar 

  11. B. Rodríguez-González, A. Burrows, M. Watanabe, C. J. Kiely, and L. M. L. Marzán, J. Mater. Chem. 151, 755 (2005).

    Google Scholar 

  12. Y. Liu, J. Zhou, B. Wang, T. Jiang, H. P. Ho, L. Petti, and P. Mormile, Phys. Chem. Chem. Phys. 17, 6819 (2015).

    Article  PubMed  CAS  Google Scholar 

  13. J. A. Rather, E. A. Khudaish, A. Munam, A. Qurashi, and P. Kannan, Sens. Actuators, B 23, 7672 (2016).

    Google Scholar 

  14. F. Li, Z. Li, C. Zeng, and Y. Hu, J. Braz. Chem. Soc. 28, 960 (2017).

    CAS  Google Scholar 

  15. N. K. R. Bogireddy, U. Pal, L. M. Gomez, and V. Agarwal, RSC Adv. 8, 24819 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. M. Teimouri, F. Khosravi-Nejad, F. Attar, A. A. Saboury, I. Kostova, G. Benelli, and M. Falahati, J. Clean. Prod. 184, 740 (2018).

    Article  CAS  Google Scholar 

  17. W. Shen, Y. Qu, X. Pei, S. Li, S. You, J. Wang, Z. Zhang, and J. Zhou, J. Hazard. Mater. 321, 299 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Y. S. Seo, E. Y. Ahn, J. Park, T. Y. Kim, J. E. Hong, K. Kim, Y. Park, and Y. Park, Nanoscale Res. Lett. 1, 12 (2017).

    Google Scholar 

  19. S. S. R. Gupta, M. L. Kantam, and B. M. Bhanage, Nano-Struct. Nano-Objects 14, 125 (2018).

    Article  CAS  Google Scholar 

  20. A. Staykov, T. Miwa, and K. Yoshizawa, J. Catal. 364, 141 (2018).

    Article  CAS  Google Scholar 

  21. L. Feng, G. Gao, P. Huang, K. Wang, X. Wang, T. Luo, and C. Zhang, Nano Biomed. Eng. 2, 258 (2010).

    Article  CAS  Google Scholar 

  22. M. S. Holden, K. E. Nick, M. Hall, J. R. Milligan, Q. Chen, and C. C. Perry, RSC Adv. 4, 52279 (2014).

    Article  PubMed  CAS  Google Scholar 

  23. J. Huang, S. Vongehr, S. Tang, H. Lu, J. Shen, and X. Meng, Langmuir 25, 890 (2009).

    Google Scholar 

  24. D. H. Chen and C. J. Chen, J. Mater. Chem. 12, 1557 (2002).

    Article  CAS  Google Scholar 

  25. Q. Zhang, J. Xie, Y. Yu, and J. Y. Lee, Nanoscale 2, 1962 (2012).

    Article  Google Scholar 

  26. N. Arora, A. Mehta, A. Mishra, and S. Basu, Appl. Clay Sci. 151, 1 (2018).

    Article  CAS  Google Scholar 

  27. K. L. McGilvray, C. Fasciani, C. J. Bueno-Alejo, R. Schwartz-Narbonne, and J. C. Scaiano, Langmuir 28, 16148 (2012).

    Article  PubMed  CAS  Google Scholar 

  28. K. L. McGilvray, C. Fasciani, C. J. Bueno-Alejo, R. Schwartz-Narbonne, and J. C. Scaiano, Langmuir 28, 16148 (2012).

    Article  PubMed  CAS  Google Scholar 

  29. J. Czaplinska, I. Sobczak, and M. Ziolek, J. Phys. Chem. C 118, 12796 (2014).

    Article  CAS  Google Scholar 

  30. M. Hong, L. Xu, F. Wang, S. Xu, H. Li, C. Z. Li, and J. Liu, New J. Chem. 40, 1685 (2016).

    Article  CAS  Google Scholar 

  31. H. Zhang, C. Fei, D. Zhang, and F. Tang, J. Hazard. Mater. 145, 227 (2007).

    Article  PubMed  CAS  Google Scholar 

  32. O. A. Zelekew and D. H. Kuo, Phys. Chem. Chem. Phys. 18, 4405 (2016).

    Article  Google Scholar 

  33. Z. Q. Cheng, Y. H. Qiu, Z. L. Li, D. J. Yang, S. J. Ding, G. L. Cheng, Z. H. Hao, and Q. Q. Wang, Opt. Mater. Express 9, 860 (2019).

    Article  CAS  Google Scholar 

  34. Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, Appl. Phys. Lett. 114, 011901 (2019).

  35. S. Mahajan, J. Richardson, T. Brown, and P. N. Bartlett, J. Am. Chem. Soc. 130, 589 (2008).

    Article  Google Scholar 

  36. N. Dirany, M. Arab, V. Madigou, C. Leroux, and J. R. Gavarri, RSC Adv. 6, 69615 (2016).

    Article  CAS  Google Scholar 

  37. R. Liu, T. Sha, Q. Zhou, and B. Nie, Appl. Surf. Sci. 470, 1003 (2019).

    Article  CAS  Google Scholar 

  38. D. Huang, X. Bai, and L. Zheng, J. Phys. Chem. C 115, 14641 (2011).

    Article  CAS  Google Scholar 

  39. L. F. Zhang, S. L. Zhong, and A. W. Xu, Angew. Chem. Int. Ed. 52, 645 (2013).

    Article  Google Scholar 

  40. K. K. Haldar, S. Kundu, and A. Patra, ACS Appl. Mater. Interfaces 6, 21946 (2014).

    Article  PubMed  CAS  Google Scholar 

  41. S. Krishnamurthy, A. Esterle, N. C. Sharma, and S. V. Sahi, Nanoscale Res. Lett. 9, 627 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. B. Xia, F. He, and L. Li, Langmuir 29, 4901 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Misbah Ullah Khan or Hayat Ullah.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Ullah, H., Honey, S. et al. Electrochemical Deposition of Au/Ag Nanostructure for the Catalytic Reduction of p-Nitrophenol. Russ. J. Phys. Chem. 96, 2490–2496 (2022). https://doi.org/10.1134/S0036024422110206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422110206

Keywords:

Navigation