Skip to main content
Log in

Problems of the Theory of Ion Exchange II: Selectivity of Ion Exchangers

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

An approach is developed in which the interaction between the functional group of an ion exchanger and a counterion is presented in the form of the main Coulomb term—the so-called potential of the ion exchanger related to the functional group—and small contributions from the electrostatic and other forces associated with the parameters of the counterion to describe the equilibrium of ion exchange. It is shown that along with the sizes of counterions (which follows from the electrostatic pattern), the coefficients of selectivity are affected by the ability of ions to hydrate. This is expressed in the so-called hydrate defect, i.e., the specific number of water molecules lost by an ion upon transitioning to the ion-exchanger phase. The inversion of the selectivity of ion exchangers as a result of a combination of the effects of Coulomb interaction and hydration is discussed. An non-observational model of the hydration shell of an ion is proposed that considers the ability of the ion to preserve or destroy the local structure of the medium. Quantitative relations are derived for the coefficients of selectivity of ion exchange, the parameters of which are the potentials and swelling of ion exchangers, and the size, charge, and nature of counterions. The correspondence between the calculated and experimental values for alkali metal and ammonium cations is shown using the example of a strongly acid cation exchanger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. P. Gregor and J. I. Bregman, J. Colloid Sci. 6, 323 (1951).

    Article  CAS  Google Scholar 

  2. J. A. Marinsky, in Ion Exchange: A Series of Advances, Ed. by J. A. Marinsky (Buffalo, New York, 1966), Vol. 1, Ch. 1.

    Google Scholar 

  3. F. E. Harris and S. A. Rice, J. Chem. Phys. 24, 1258 (1956).

    Article  CAS  Google Scholar 

  4. V. S. Soldatov, E. G. Kosandrovich, and T. V. Bezyazychnaya, React. Funct. Polym. 131, 219 (2018). https://doi.org/10.1016/j.reactfunctpolym.2018.07.010

    Article  CAS  Google Scholar 

  5. V. A. Shaposhnik, Sorbtsion. Khromatogr. Protsessy 20 (1), 48 (2020). https://doi.org/10.17308/sorpchrom.2020.20/2379

    Article  CAS  Google Scholar 

  6. A. M. Dolgonosov, Russ. J. Phys. Chem. A 96 (10), 2252 (2022). https://doi.org/10.31857/S0044453722100089

  7. F. Helfferich, Ion Exchange (McGraw-Hill, New York, 1962).

    Google Scholar 

  8. G. Eisenman, Biophys. J., Suppl. 2, 259 (1962). https://doi.org/10.1016/s0006-3495(62)86959-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ion Exchange: A Series of Advances, Ed. by J. A. Marinsky (Buffalo, New York, 1966), Vol. 1.

    Google Scholar 

  10. M. G. Tokmachev, N. B. Ferapontov, I. O. Agapov, and Kh. T. Trobov, Colloid. J. 80, 91 (2018). https://doi.org/10.1134/S1061933X1801012X

    Article  CAS  Google Scholar 

  11. J. D. Smith, R. J. Saykally, and P. L. Geissler, J. Am. Chem. Soc. 129, 13847 (2007). https://doi.org/10.1021/ja071933z

    Article  PubMed  CAS  Google Scholar 

  12. R. Mancinelli, A. Botti, F. Bruni, et al., Phys. Chem. Chem. Phys. 9, 2959 (2007). https://doi.org/10.1039/B701855J

    Article  PubMed  CAS  Google Scholar 

  13. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, Oxford, UK, 1990).

    Google Scholar 

  14. A. M. Dolgonosov, J. Struct. Chem. 60, 1693 (2019). https://doi.org/10.1134/S0022476619110015

    Article  CAS  Google Scholar 

  15. A. M. Dolgonosov, J. Struct. Chem. 61, 1045 (2020). https://doi.org/10.1134/S0022476620070069

    Article  Google Scholar 

  16. G. E. Boyd and B. A. Soldano, Z. Elektrochem. 57, 162 (1953).

  17. A. M. Dolgonosov, N. K. Kolotilina, M. S. Yadykov, and A. A. Burmistrov, J. Anal. Chem. 68, 444 (2013). https://doi.org/10.1134/S1061934813050079

    Article  CAS  Google Scholar 

  18. J. A. Dean, Lange’s Handbook of Chemistry, 15th ed. (McGraw-Hill, New York, 1999).

    Google Scholar 

  19. V. Sidey, Acta Crystallogr., Sect. B 72, 626 (2016). https://doi.org/10.1107/S2052520616008064

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Dolgonosov.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgonosov, A.M. Problems of the Theory of Ion Exchange II: Selectivity of Ion Exchangers. Russ. J. Phys. Chem. 96, 2515–2522 (2022). https://doi.org/10.1134/S0036024422110085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422110085

Keywords:

Navigation