Skip to main content
Log in

Chemical Synthesis, Morphology, and Optical Properties of Manganese-Doped Zinc Sulfide Films

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Chemical deposition is used to form thin-film layers of manganese-doped zinc sulfide (ZnS(Mn)) on frosted glass substrates. The films are ~220 nm thick and composed of lenticular-shaped grains with sizes smaller than those of ZnS films. It is found that introducing manganese(II) chloride into the reaction mixture preserves the excess content of the metal over the content of chalcogen. Manganese in amounts of 2.5 ± 0.25 at. % is detected in a film formed at the maximum concentration of MnCl2 in the reactor. X-ray diffraction reveals the formation of amorphous ZnS and ZnS(Mn) layers with short-range order of the environment of atoms with a B4-type hexagonal structure (space group P63mc). The band gap of the films, calculated from optical spectroscopy data, falls from 3.68 to 3.54 eV upon an increase in the content of manganese. It is shown that incorporating manganese into a film results in photoluminescence in the range of 580–620 nm. At the maximum content of manganese, the photoluminescence is approximately double that of ZnS. Luminescence quenching is independent of the concentration of dopant for all film samples and is characterized by a decay period of 13–15 μs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. Díaz-Reyesa, R. S. Castillo-Ojeda, R. Sánchez-Espíndola, et al., Curr. Appl. Phys. 15, 103 (2015). https://doi.org/10.1016/j.cap.2014.11.012

    Article  Google Scholar 

  2. P. N. Krylov, F. Z. Gil’mutdinov, E. A. Romanov, and I. V. Fedotova, Semiconductors 45, 1512 (2011).

    Article  CAS  Google Scholar 

  3. A. K. Singh, R. K. Yadav, D. Mishra, et al., Desalination 493, 114652 (2020). https://doi.org/10.1016/j.desal.2020.114652

  4. K. A. Guzman-Garcia, H. R. Vega-Carrillo, E. Gallego, et al., Radiat. Meas. 107, 58 (2017). https://doi.org/10.1016/j.radmeas.2017.11.001

    Article  CAS  Google Scholar 

  5. E. Y. Vilkova and O. V. Timofeev, Mech. Opt. 69, 9 (2010).

    Google Scholar 

  6. S. Tec-Yam, J. Rojas, V. Rejón, et al., Mater. Chem. Phys. 136, 386 (2012). https://doi.org/10.1016/j.matchemphys.2012.06.063

    Article  CAS  Google Scholar 

  7. T. S. Tilakraj, K. P. Mallikarjun, S. B. Vighneshwar, et al., Mater. Today Proc. 47, 4189 (2021). https://doi.org/10.1016/j.matpr.2021.04.455

    Article  CAS  Google Scholar 

  8. M. Mostafa, El. J. Nady, S. M. Ebrahim, et al., Opt. Mater. 112, 1 (2021). https://doi.org/10.1016/j.optmat.2020.110732

    Article  CAS  Google Scholar 

  9. S. Poggio, B. Wang, U. J. Gibson, et al., Chem. Chem. Phys. 17, 14208 (2015). https://doi.org/10.1039/C5CP00574D

    Article  CAS  Google Scholar 

  10. M. A. Jafarov, E. F. Nasirov, and R. S. Jafarli, Inorg. Mater. 53, 39 (2017). https://doi.org/10.1134/S0020168517010058

    Article  CAS  Google Scholar 

  11. B. Choi, H. Shim, B. Allabergenov, et al., Opt. Mater. Express 6, 2336 (2016). https://doi.org/10.1364/OME.6.002336

    Article  CAS  Google Scholar 

  12. R. V. Zaware, R. Y. Borse, and B. G. Wagh, Mater. Sci. Poland 35, 291 (2017). https://doi.org/10.1515/msp-2017-0024

    Article  CAS  Google Scholar 

  13. P. Babu, M. R. V. Reddy, S. Kondaiah, et al., Optik 130, 608 (2017). https://doi.org/10.1016/j.ijleo.2016.10.083

    Article  CAS  Google Scholar 

  14. P. J. Binu and S. Muthukumaran, Mater. Today Proc. 43, 3762 (2021). https://doi.org/10.1016/j.matpr.2020.11.411

    Article  CAS  Google Scholar 

  15. V. D. Mote, Y. Purushotham, and B. N. Dole, Cerâmica 59, 395 (2013).

    Article  CAS  Google Scholar 

  16. R. G. Valeev, A. L. Trigub, A. N. Beltiukov, D. I. Petukhov, I. A. El’kin, and V. V. Stashkova, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 92 (2019). https://doi.org/10.1134/S1027451019010373

    Article  CAS  Google Scholar 

  17. B. Demirselcuk, E. Kus, A. Kucukarslan, et al., Phys. B (Amsterdam, Neth.) 622, 413353 (2021). https://doi.org/10.1016/j.physb.2021.413353

  18. S. Ebrahimi, B. Yarmand, and N. Naderi, Sens. Actuators, A 303, 111832 (2020). https://doi.org/10.1016/j.sna.2020.111832

  19. J. F. Suyver, S. F. Wuister, J. J. Kelly, et al., Nano Lett. 1, 429 (2001). https://doi.org/10.1021/nl015551h

    Article  CAS  Google Scholar 

  20. L. N. Maskaeva, A. I. Shemyakina, V. F. Markov, et al., Russ. J. Appl. Chem. 88, 1417 (2015). https://doi.org/10.1134/S1070427215090062

    Article  CAS  Google Scholar 

  21. V. F. Markov, L. N. Maskaeva, and P. N. Ivanov, Hydrochemical Deposition of Metal Sulfide Films: Modeling and Experiment (UrO RAN, Yekaterinburg, 2006) [in Russian].

    Google Scholar 

  22. Yu. Yu. Lur’e, Handbook on Analytical Chemistry (Khimiya, Moscow, 1989) [in Russian].

    Google Scholar 

  23. L. N. Maskaeva, I. V. Vaganova, V. F. Markov, and V. I. Voronin, Russ. J. Appl. Chem. 90, 691 (2017). https://doi.org/10.1134/S1070427217050044

    Article  CAS  Google Scholar 

  24. A. Krężela and W. Maret, Arch. Biochem. Biophys. 611, 3 (2016). https://doi.org/10.1016/j.abb.2016.04.010

    Article  CAS  Google Scholar 

  25. E. A. Fedorova, L. N. Maskaeva, V. F. Markov, S. A. Bakhteev, and R. A. Yusupov, Russ. J. Phys. Chem. A 92, 2575 (2018). https://doi.org/10.1134/S0036024418120117

    Article  CAS  Google Scholar 

  26. A. I. Kitaigorodskii, X-ray Diffraction Analysis of Fine-Crystalline and Amorphous Bodies (GITTL, Moscow, 1952) [in Russian].

    Google Scholar 

  27. F. A. la Porta, J. Andrés, M. S. Li, et al., Phys. Chem. Chem. Phys. 16, 20127 (2014). https://doi.org/10.1039/C4CP02611J

    Article  PubMed  CAS  Google Scholar 

  28. S. Lee, D. Song, D. Kim, et al., Mater. Lett. 58, 342 (2004). https://doi.org/10.1016/S0167-577X(03)00483-X

    Article  CAS  Google Scholar 

  29. W. Q. Peng, G. W. Cong, S. C. Qu, et al., Opt. Mater. 29, 313 (2006). https://doi.org/10.1016/j.optmat.2005.10.003

    Article  CAS  Google Scholar 

  30. M. Hafeez, B. A. Al-Asbahi, M. H. H. Jumali, et al., Mater. Sci. Semicond. Process. 117, 105193 (2020). https://doi.org/10.1016/j.mssp.2020.105193

  31. O. A. Lipina, R. A. Gagarin, L. N. Maskaeva, et al., AIP Conf. Proc. 2063, 040034 (2019). https://doi.org/10.1063/1.5087366

  32. N. Murase, R. Jagannathan, Y. Kanematsu, et al., J. Phys. Chem. B 103, 754 (1999). https://doi.org/10.1021/jp9828179

    Article  CAS  Google Scholar 

  33. W. G. Becker and A. J. Bard, J. Phys. Chem. 87, 4883 (1983).

    Google Scholar 

  34. T. T. T. Huong, N. T. Loan, D. X. Loc, et al., Opt. Mater. 113, 110858 (2021). https://doi.org/10.1016/j.optmat.2021.110858

  35. V. D. Shcherbakov and A. S. Nizamutdinov, J. Lumin. 205, 37 (2019). https://doi.org/10.1016/j.jlumin.2018.08.054

    Article  CAS  Google Scholar 

  36. S. G. Singh, S. Sen, G. D. Patra, et al., J. Lumin. 166, 222 (2015). https://doi.org/10.1016/j.jlumin.2015.05.014

    Article  CAS  Google Scholar 

  37. T. I. Krasnenko, A. N. Enyashin, N. A. Zaitseva, et al., J. Alloys Compd. 820, 153129 (2020). https://doi.org/10.1016/j.jallcom.2019.153129

  38. L. Lin, M. Yin, S. Chaoshu, et al., J. Rare Earths 24, 104 (2006). https://doi.org/10.1016/S1002-0721(07)60334-2

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-48-660041r_a; and by the RF Ministry of Education and Science a part of State Task no. 122021000031-8. Optical studies were performed at the Institute of Solid State Chemistry, subject no. AAAA-A19-119031890025-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Maskaeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maskaeva, L.N., Lipina, O.A., Markov, V.F. et al. Chemical Synthesis, Morphology, and Optical Properties of Manganese-Doped Zinc Sulfide Films. Russ. J. Phys. Chem. 96, 2505–2514 (2022). https://doi.org/10.1134/S0036024422100211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422100211

Keywords:

Navigation