Skip to main content
Log in

Comparative Study of the Formation of Heterometallic Diethylenetriaminpentaacetates of Cobalt(II), Nickel(II), and Copper(II) in Aqueous Solutions

  • XIV INTERNATIONAL SCIENTIFIC CONFERENCE “PROBLEMS OF SOLVATION AND COMPLEX FORMATION IN SOLUTIONS”
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The formation of heterobinuclear complexes of cobalt(II), nickel(II), and copper(II) with diethylenetriaminepentaacetic acid (dtpa, H5dtpa) in aqueous solutions was studied by spectrophotometry. The effect the pH has on the formation of the coordination sphere of heterobimetallic complex particles in ternary systems with an equimolar ratio of components is established. The thermodynamic stability of homo- and heterobinuclear complexes is estimated via mathematical modeling of the formation of complex particles of a certain stoichiometry with limited logarithmic processing of experimental data for specific polycomponent systems. Numerical values of logarithms of the constant of stability (\(\log \beta \)) of homobinuclear chelates [Me2dtpa] are 24.46 ± 0.1; 25.53 ± 0.1 and 27.03 ± 0.1 for Co(II), Ni(II), and Cu(II), respectively. Values \(\log \beta \) are 25.43 ± 0.1; 25.60 ± 0.1; 17.83 ± 0.09; and 27.57 ± 0.1 for heterobimetallic diethylenetriaminepentaacetates [CoNidtpa], [CoCudtpa], [NiCuHdtpa]0, and [NiCudtpa], respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. C. S. Maldonado, J. R. de la Rosa, C. J. Lucio-Ortiz, et al., in Direct Synthesis of Metal Complexes (Elsevier, Amsterdam, 2018), p. 369. https://doi.org/10.1016/B978-0-12-811061-4.00010-4

    Book  Google Scholar 

  2. A. van Niekerk, P. Chellan, and S. F. Mapolie, Eur. J. Inorg. Chem. 30, 3432 (2019). https://doi.org/10.1002/ejic.201900375

    Article  CAS  Google Scholar 

  3. M. M. Mashaly, T. M. Ismail, S. B. El-Maraghy, and H. A. Habib, J. Coord. Chem. 57, 1099 (2004). https://doi.org/10.1080/00958970412331281881

    Article  CAS  Google Scholar 

  4. I. P. Stolarov, N. V. Cherkashina, I. A. Yakushev, A. V. Churakov, A. B. Kornev and E. V. Fatyushina, Russ. J. Inorg. Chem. 65, 507 (2020). https://doi.org/10.1134/S003602362004021X

    Article  CAS  Google Scholar 

  5. R. Mitsuhashi, T. Ueda, and M. Mikuriya, Magnetochemistry 5, 1 (2019). https://doi.org/10.3390/magnetochemistry5010005

    Article  CAS  Google Scholar 

  6. A. Dey, S. Tripathi, M. Shanmugam, et al., in Organometallic Magnets (Springer Nature, Switzerland AG, 2019), p. 77. https://doi.org/10.1007/3418_2018_9

    Book  Google Scholar 

  7. A. Das, S. Goswami, R. Sen, et al., Inorg. Chem. 58, 5787 (2019). https://doi.org/10.1021/acs.inorgchem.9b00121

    Article  CAS  PubMed  Google Scholar 

  8. M.-L. Wind, S. Hoof, B. Braun-Cula, et al., Inorg. Chem. 59, 6866 (2020). https://doi.org/10.1021/acs.inorgchem.0c00279

    Article  CAS  PubMed  Google Scholar 

  9. V. S. Sergienko, G. G. Aleksandrov, I. I. Seifullina, and E. E. Martsinko, Crystallogr. Rep. 49, 788 (2004). https://doi.org/10.1134/1.1803307

    Article  CAS  Google Scholar 

  10. N. Rusakova, S. Smola, E. Martsinko, et al., J. Fluoresc. 18, 247 (2008). https://doi.org/10.1007/s10895-007-0224-y

    Article  CAS  PubMed  Google Scholar 

  11. G. Dehaen, P. Verwilst, S. V. Eliseeva, et al., Inorg. Chem. 50, 10005 (2011). https://doi.org/10.1021/ic200726t

    Article  CAS  PubMed  Google Scholar 

  12. Q. Liu, F. Wan, L. X. Qiu, et al., RSC Adv. 4, 27013 (2014). https://doi.org/10.1039/c4ra02953d

    Article  CAS  Google Scholar 

  13. N. V. Shcheglova, T. V. Popova, and X. M. Yaroshevskaya, Vestn. Tekhnol. Univ. 17 (14), 127 (2014). https://doi.org/10.13140/RG.2.1.3329.8642

    Article  Google Scholar 

  14. T. V. Popova, N. V. Shcheglova, and V. A. Kiseleva, Russ. Chem. Bull. 64, 1857 (2015). https://doi.org/10.1007/s11172-015-1084-2

    Article  CAS  Google Scholar 

  15. G. S. Dhaliwal, Int. J. Sci. Res. 5, 1390 (2016).

    Google Scholar 

  16. F. J. C. Rossotti and H. Rossotti, The Determination of Stability Constants and Other Equilibrium Constants in Solution (McGraw-Hill, New York, 1961).

    Google Scholar 

  17. M. T. Beck, Chemistry of Complex Equilibria (Van Nostrand Reinhold, 1970).

    Google Scholar 

  18. G. Anderegg, F. Arnaud-Neu, R. Delgado, et al., Pure Appl. Chem. 77, 1445 (2005). https://doi.org/10.1351/pac200577081445

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Popova.

Additional information

ADDITIONAL INFORMATION

Materials from this work were presented at the XIV International Scientific Conference held in Ivanovo from September 20 to 24, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, T.V., Shcheglova, N.V. Comparative Study of the Formation of Heterometallic Diethylenetriaminpentaacetates of Cobalt(II), Nickel(II), and Copper(II) in Aqueous Solutions. Russ. J. Phys. Chem. 96, 1170–1174 (2022). https://doi.org/10.1134/S003602442206019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442206019X

Keywords:

Navigation