Abstract
Approaches are developed to preparing and studying suspensions of single-walled carbon nanotubes in ethanol with a nonionic surfactant. A nonlinear dependence is established for the dispersion of single-walled carbon nanotubes on the concentration of a surfactant (cholic acid). Results can be used as the basis for developing technologies of creating new construction materials.
Similar content being viewed by others
REFERENCES
M. Terrones, Ann. Rev. Mater. Res. 33, 419 (2003). https://doi.org/10.1146/annurev.matsci.33.012802.100255
S. B. Sinnott and R. Andrews, Crit. Rev. Solid State Mater. Sci. 26, 145 (2001). https://doi.org/10.1080/20014091104189
T. Hasan, Z. Sun, F. Wang, et al., Adv. Mater. 21, 3874 (2009). https://doi.org/10.1002/adma.200901122
M. S. Arnold, A. A. Green, J. F. Hulvat, et al., Nat. Nanotechnol. 1, 60 (2006). https://doi.org/10.1038/nnano.2006.52
A. M. Vorobei, O. I. Pokrovskiy, K. B. Ustinovich, et al., Polymer. 95, 77 (2016). https://doi.org/10.1016/j.polymer.2016.04.059
A. A. Dyshin, O. V. Eliseeva, G. V. Bondarenko, and M. G. Kiselev, Russ. J. Gen. Chem. 85, 648 (2015). https://doi.org/10.1134/S1070363215030202
Ya. I. Zuev, A. M. Vorobei, and O. O. Parenago, Russ. J. Phys. Chem. B 15, 1107 (2021). https://doi.org/10.1134/S1990793121070174
A. A. Dyshin, M. S. Kuzmikov, A. A. Aleshonkova, G. V. Bondarenko, A. M. Kolker, and M. G. Kiselev, Russ. J. Phys. Chem. B 15, 1221 (2021). https://doi.org/10.1134/S1990793121080030
A. A. Dyshin, O. V. Eliseeva, G. V. Bondarenko, et al., Zh. Fiz. Khim. 91, 1740 (2017). https://doi.org/10.7868/s0044453717100090
A. M. Vorobei, Ya. I. Zuev, A. A. Dyshin, et al., Russ. J. Phys. Chem. B 15, 1314 (2021). https://doi.org/10.1134/S1990793121080169
M. F. Islam, E. Rojas, D. M. Bergey, et al., Nano Lett. 3, 269 (2003). https://doi.org/10.1021/nl025924u
X. Gong, J. Liu, S. Baskaran, et al., Chem. Mater. 12, 1049 (2000). https://doi.org/10.1021/cm9906396
V. C. Moore, M. S. Strano, E. H. Haroz, et al., Nano Lett. 3, 1379 (2003). https://doi.org/10.1021/nl034524j
M. S. Arnold, J. Suntivich, S. I. Stupp, et al., ACS Nano 2, 2291 (2008). https://doi.org/10.1021/nn800512t
A. A. Dyshin, O. V. Eliseeva, G. V. Bondarenko, et al., Russ. J. Phys. Chem. A 89, 1628 (2015). https://doi.org/10.1134/S0036024415090095
S. Manivannan, I. O. Jeong, J. H. Ryu, et al., J. Mater. Sci. Mater. Electron. 20, 223 (2009). https://doi.org/10.1007/s10854-008-9706-1
A. Ortiz-Acevedo, H. Xie, V. Zorbas, et al., J. Am. Chem. Soc. 127, 9512 (2005). https://doi.org/10.1021/ja050507f
M. J. O’Connell, P. Boul, L. M. Ericson, et al., Chem. Phys. Lett. 342, 265 (2001). https://doi.org/10.1016/S0009-2614(01)00490-0
J. Wang and Y. Li, J. Am. Chem. Soc. 131, 5364 (2009). https://doi.org/10.1021/ja807202m
Y. Tan and D. E. Resasco, J. Phys. Chem. B 109, 14454 (2005). https://doi.org/10.1021/jp052217r
R. Rastogi, R. Kaushal, S. K. Tripathi, et al., J. Colloid Interface Sci. 328, 421 (2008). https://doi.org/10.1016/j.jcis.2008.09.015
J. Lu, S. Nagase, X. Zhang, et al., J. Am. Chem. Soc. 128, 5114 (2006). https://doi.org/10.1021/ja058214+
A. Nish, J.-Y. Hwang, J. Doig, et al., Nat. Nanotechnol. 2, 640 (2007). https://doi.org/10.1038/nnano.2007.290
S. Utsumi, M. Kanamaru, H. Honda, et al., J. Colloid Interface Sci. 308, 276 (2007). https://doi.org/10.1016/j.jcis.2006.12.041
N. Nair, W.-J. Kim, R. D. Braatz, et al., Langmuir 24, 1790 (2008). https://doi.org/10.1021/la702516u
A. A. Green, M. C. Duch, and M. C. Hersam, Nano Res. 2, 69 (2009). https://doi.org/10.1007/s12274-009-9006-y
S. Ghosh, S. M. Bachilo, and R. B. Weisman, Nat. Nanotechnol. 5, 443 (2010). https://doi.org/10.1038/nnano.2010.68
M. J. O’Connell, S. M. Bachilo, C. Huffman, et al., Science (Washington, DC, U. S.) 297, 593 (2002). https://doi.org/10.1126/science.1072631
A. A. Dyshin, O. V. Eliseeva, G. V. Bondarenko, A. M. Kolker, and M. G. Kiselev, Russ. J. Phys. Chem. A 90, 2434 (2016). https://doi.org/10.1134/S0036024416120086
A. A. Dyshin, O. V. Eliseeva, G. V. Bondarenko, A. M. Kolker, A. G. Zakharov, M. V. Fedorov, and M. G. Kiselev, Russ. J. Phys. Chem. A 87, 2068 (2013). https://doi.org/10.1134/S0036024413120054
G. I. Dovbeshko, O. P. Repnytska, E. D. Obraztsova, et al., Chem. Phys. Lett. 372, 432 (2003). https://doi.org/10.1016/S0009-2614(03)00429-9
M. S. Dresselhaus, G. Dresselhaus, A. Jorio, et al., Acc. Chem. Res. 35, 1070 (2002). https://doi.org/10.1021/ar0101537
O. V. Eliseeva, A. A. Dyshin, and M. G. Kiselev, Russ. J. Phys. Chem. A 87, 401 (2013). https://doi.org/10.1134/S0036024413030096
J. Robertson, Mater. Sci. Eng. R 37, 129 (2002). https://doi.org/10.1016/S0927-796X(02)00005-0
M. S. Dresselhaus and P. C. Eklund, Adv. Phys. 49, 705 (2000). https://doi.org/10.1080/000187300413184
A. A. Dyshin, R. D. Oparin, and M. G. Kiselev, Russ. J. Phys. Chem. B 6, 868 (2012). https://doi.org/10.1134/S1990793112080106
W. G. Hoover, Phys. Rev. A 31, 1695 (1985). https://doi.org/10.1103/PhysRevA.31.1695
W. L. Jorgensen, J. Phys. Chem. 90, 1276 (1986). https://doi.org/10.1021/j100398a015
W. L. Jorgensen and D. L. Severance, J. Am. Chem. Soc. 112, 4768 (1990). https://doi.org/10.1021/ja00168a022
W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996). https://doi.org/10.1021/ja9621760
ACKNOWLEDGMENTS
Raman spectroscopic studies were performed using the equipment of the Institute of Experimental Mineralogy of the Russian Academy of Sciences (Chernogolovka). The authors thank Senior Researcher O.V. Eliseeva for her consultations and helpful comments at all stages of our work.
Funding
This research was funded by Ministry of Science and Higher Education of the Russian Federation, contract no. 01201260481.
Author information
Authors and Affiliations
Corresponding author
Additional information
ADDITIONAL INFORMATION
Materials from this work were presented at the XIV International Scientific Conference held in Ivanovo from September 20 to 24, 2021.
Rights and permissions
About this article
Cite this article
Dyshin, A.A., Fomina, N.A., Aleshonkova, A.A. et al. Dispersion of Single-Walled Carbon Nanotubes in Ethanol–Cholic Acid Mixtures: Experiments and Molecular Dynamic Simulation. Russ. J. Phys. Chem. 96, 1142–1147 (2022). https://doi.org/10.1134/S003602442206005X
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S003602442206005X