Skip to main content
Log in

Dispersion of Single-Walled Carbon Nanotubes in Ethanol–Cholic Acid Mixtures: Experiments and Molecular Dynamic Simulation

  • XIV INTERNATIONAL SCIENTIFIC CONFERENCE “PROBLEMS OF SOLVATION AND COMPLEX FORMATION IN SOLUTIONS”
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Approaches are developed to preparing and studying suspensions of single-walled carbon nanotubes in ethanol with a nonionic surfactant. A nonlinear dependence is established for the dispersion of single-walled carbon nanotubes on the concentration of a surfactant (cholic acid). Results can be used as the basis for developing technologies of creating new construction materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Terrones, Ann. Rev. Mater. Res. 33, 419 (2003). https://doi.org/10.1146/annurev.matsci.33.012802.100255

    Article  CAS  Google Scholar 

  2. S. B. Sinnott and R. Andrews, Crit. Rev. Solid State Mater. Sci. 26, 145 (2001). https://doi.org/10.1080/20014091104189

    Article  CAS  Google Scholar 

  3. T. Hasan, Z. Sun, F. Wang, et al., Adv. Mater. 21, 3874 (2009). https://doi.org/10.1002/adma.200901122

    Article  CAS  Google Scholar 

  4. M. S. Arnold, A. A. Green, J. F. Hulvat, et al., Nat. Nanotechnol. 1, 60 (2006). https://doi.org/10.1038/nnano.2006.52

    Article  CAS  PubMed  Google Scholar 

  5. A. M. Vorobei, O. I. Pokrovskiy, K. B. Ustinovich, et al., Polymer. 95, 77 (2016). https://doi.org/10.1016/j.polymer.2016.04.059

    Article  CAS  Google Scholar 

  6. A. A. Dyshin, O. V. Eliseeva, G. V. Bondarenko, and M. G. Kiselev, Russ. J. Gen. Chem. 85, 648 (2015). https://doi.org/10.1134/S1070363215030202

    Article  CAS  Google Scholar 

  7. Ya. I. Zuev, A. M. Vorobei, and O. O. Parenago, Russ. J. Phys. Chem. B 15, 1107 (2021). https://doi.org/10.1134/S1990793121070174

  8. A. A. Dyshin, M. S. Kuzmikov, A. A. Aleshonkova, G. V. Bondarenko, A. M. Kolker, and M. G. Kiselev, Russ. J. Phys. Chem. B 15, 1221 (2021). https://doi.org/10.1134/S1990793121080030

  9. A. A. Dyshin, O. V. Eliseeva, G. V. Bondarenko, et al., Zh. Fiz. Khim. 91, 1740 (2017). https://doi.org/10.7868/s0044453717100090

    Article  Google Scholar 

  10. A. M. Vorobei, Ya. I. Zuev, A. A. Dyshin, et al., Russ. J. Phys. Chem. B 15, 1314 (2021). https://doi.org/10.1134/S1990793121080169

  11. M. F. Islam, E. Rojas, D. M. Bergey, et al., Nano Lett. 3, 269 (2003). https://doi.org/10.1021/nl025924u

    Article  CAS  Google Scholar 

  12. X. Gong, J. Liu, S. Baskaran, et al., Chem. Mater. 12, 1049 (2000). https://doi.org/10.1021/cm9906396

    Article  CAS  Google Scholar 

  13. V. C. Moore, M. S. Strano, E. H. Haroz, et al., Nano Lett. 3, 1379 (2003). https://doi.org/10.1021/nl034524j

    Article  CAS  Google Scholar 

  14. M. S. Arnold, J. Suntivich, S. I. Stupp, et al., ACS Nano 2, 2291 (2008). https://doi.org/10.1021/nn800512t

    Article  CAS  PubMed  Google Scholar 

  15. A. A. Dyshin, O. V. Eliseeva, G. V. Bondarenko, et al., Russ. J. Phys. Chem. A 89, 1628 (2015). https://doi.org/10.1134/S0036024415090095

    Article  CAS  Google Scholar 

  16. S. Manivannan, I. O. Jeong, J. H. Ryu, et al., J. Mater. Sci. Mater. Electron. 20, 223 (2009). https://doi.org/10.1007/s10854-008-9706-1

    Article  CAS  Google Scholar 

  17. A. Ortiz-Acevedo, H. Xie, V. Zorbas, et al., J. Am. Chem. Soc. 127, 9512 (2005). https://doi.org/10.1021/ja050507f

    Article  CAS  PubMed  Google Scholar 

  18. M. J. O’Connell, P. Boul, L. M. Ericson, et al., Chem. Phys. Lett. 342, 265 (2001). https://doi.org/10.1016/S0009-2614(01)00490-0

    Article  Google Scholar 

  19. J. Wang and Y. Li, J. Am. Chem. Soc. 131, 5364 (2009). https://doi.org/10.1021/ja807202m

    Article  CAS  PubMed  Google Scholar 

  20. Y. Tan and D. E. Resasco, J. Phys. Chem. B 109, 14454 (2005). https://doi.org/10.1021/jp052217r

    Article  CAS  PubMed  Google Scholar 

  21. R. Rastogi, R. Kaushal, S. K. Tripathi, et al., J. Colloid Interface Sci. 328, 421 (2008). https://doi.org/10.1016/j.jcis.2008.09.015

    Article  CAS  PubMed  Google Scholar 

  22. J. Lu, S. Nagase, X. Zhang, et al., J. Am. Chem. Soc. 128, 5114 (2006). https://doi.org/10.1021/ja058214+

    Article  CAS  PubMed  Google Scholar 

  23. A. Nish, J.-Y. Hwang, J. Doig, et al., Nat. Nanotechnol. 2, 640 (2007). https://doi.org/10.1038/nnano.2007.290

    Article  CAS  PubMed  Google Scholar 

  24. S. Utsumi, M. Kanamaru, H. Honda, et al., J. Colloid Interface Sci. 308, 276 (2007). https://doi.org/10.1016/j.jcis.2006.12.041

    Article  CAS  PubMed  Google Scholar 

  25. N. Nair, W.-J. Kim, R. D. Braatz, et al., Langmuir 24, 1790 (2008). https://doi.org/10.1021/la702516u

    Article  CAS  PubMed  Google Scholar 

  26. A. A. Green, M. C. Duch, and M. C. Hersam, Nano Res. 2, 69 (2009). https://doi.org/10.1007/s12274-009-9006-y

    Article  CAS  Google Scholar 

  27. S. Ghosh, S. M. Bachilo, and R. B. Weisman, Nat. Nanotechnol. 5, 443 (2010). https://doi.org/10.1038/nnano.2010.68

    Article  CAS  PubMed  Google Scholar 

  28. M. J. O’Connell, S. M. Bachilo, C. Huffman, et al., Science (Washington, DC, U. S.) 297, 593 (2002). https://doi.org/10.1126/science.1072631

    Article  Google Scholar 

  29. A. A. Dyshin, O. V. Eliseeva, G. V. Bondarenko, A. M. Kolker, and M. G. Kiselev, Russ. J. Phys. Chem. A 90, 2434 (2016). https://doi.org/10.1134/S0036024416120086

    Article  CAS  Google Scholar 

  30. A. A. Dyshin, O. V. Eliseeva, G. V. Bondarenko, A. M. Kolker, A. G. Zakharov, M. V. Fedorov, and M. G. Kiselev, Russ. J. Phys. Chem. A 87, 2068 (2013). https://doi.org/10.1134/S0036024413120054

    Article  CAS  Google Scholar 

  31. G. I. Dovbeshko, O. P. Repnytska, E. D. Obraztsova, et al., Chem. Phys. Lett. 372, 432 (2003). https://doi.org/10.1016/S0009-2614(03)00429-9

    Article  CAS  Google Scholar 

  32. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, et al., Acc. Chem. Res. 35, 1070 (2002). https://doi.org/10.1021/ar0101537

    Article  CAS  PubMed  Google Scholar 

  33. O. V. Eliseeva, A. A. Dyshin, and M. G. Kiselev, Russ. J. Phys. Chem. A 87, 401 (2013). https://doi.org/10.1134/S0036024413030096

    Article  CAS  Google Scholar 

  34. J. Robertson, Mater. Sci. Eng. R 37, 129 (2002). https://doi.org/10.1016/S0927-796X(02)00005-0

    Article  Google Scholar 

  35. M. S. Dresselhaus and P. C. Eklund, Adv. Phys. 49, 705 (2000). https://doi.org/10.1080/000187300413184

    Article  CAS  Google Scholar 

  36. A. A. Dyshin, R. D. Oparin, and M. G. Kiselev, Russ. J. Phys. Chem. B 6, 868 (2012). https://doi.org/10.1134/S1990793112080106

    Article  CAS  Google Scholar 

  37. W. G. Hoover, Phys. Rev. A 31, 1695 (1985). https://doi.org/10.1103/PhysRevA.31.1695

    Article  CAS  Google Scholar 

  38. W. L. Jorgensen, J. Phys. Chem. 90, 1276 (1986). https://doi.org/10.1021/j100398a015

    Article  CAS  Google Scholar 

  39. W. L. Jorgensen and D. L. Severance, J. Am. Chem. Soc. 112, 4768 (1990). https://doi.org/10.1021/ja00168a022

    Article  CAS  Google Scholar 

  40. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996). https://doi.org/10.1021/ja9621760

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Raman spectroscopic studies were performed using the equipment of the Institute of Experimental Mineralogy of the Russian Academy of Sciences (Chernogolovka). The authors thank Senior Researcher O.V. Eliseeva for her consultations and helpful comments at all stages of our work.

Funding

This research was funded by Ministry of Science and Higher Education of the Russian Federation, contract no. 01201260481.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dyshin.

Additional information

ADDITIONAL INFORMATION

Materials from this work were presented at the XIV International Scientific Conference held in Ivanovo from September 20 to 24, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyshin, A.A., Fomina, N.A., Aleshonkova, A.A. et al. Dispersion of Single-Walled Carbon Nanotubes in Ethanol–Cholic Acid Mixtures: Experiments and Molecular Dynamic Simulation. Russ. J. Phys. Chem. 96, 1142–1147 (2022). https://doi.org/10.1134/S003602442206005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442206005X

Keywords:

Navigation