Skip to main content
Log in

State-Specific Dynamic Study of the Exchange and Dissociation Reaction for O(3P) and O2(\({}^{3}\Sigma _{g}^{ - }\)) Collision by Quasi-Classical Trajectory

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Present work studies the dynamical properties of the O + O2 collision by the quasi-classical trajectory method on the double many-body expansion potential energy surface. Our study includes both the exchange and dissociation reactions. For different rovibrational levels of O2, the integral cross-sections (ICSs) distributions of both channels as a function of translational energy were obtained in a range of collision energy from 0.1 to 30 eV, and the dissociation rate was calculated in the temperature range of 1000–20 000 K. Appreciable differences are found for the excitation functions between the two channels as expected for the dissociation with no barrier and exchange having a small barrier. The initial collision energy and vibrational excitation both play an enormous role in the ICSs for both channels, while the rotational excitation of the reagent has a weak effect on it. The results show that vibrationally excited states have some contribution to the dissociation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. L. van Wyngarden, K. A. Mar, K. A. Boering, et al., J. Am. Chem. Soc. 129, 2866 (2007). https://doi.org/10.1021/ja0668163

    Article  CAS  Google Scholar 

  2. A. L. Van Wyngarden, K. A. Mar, J. Quach, et al., J. Chem. Phys. 141, 064311 (2014). https://doi.org/10.1063/1.4892346

  3. S. A. Lahankar, J.-M. Zhang, T. K. Minton, et al., J. Phys. Chem. A 120, 5348 (2016). https://doi.org/10.1021/acs.jpca.6b01855

    Article  CAS  PubMed  Google Scholar 

  4. J. H. Kiefer and R. W. Lutz, Symp. (Int.) Combust. 11, 67 (1967). https://doi.org/10.1016/S0082-0784(67)80134-6

    Article  CAS  Google Scholar 

  5. O. P. Shatalov, Combust. Explos. Shock Waves 9, 610 (1973). https://doi.org/10.1007/BF00742888

    Article  Google Scholar 

  6. F. Esposito and M. Capitelli, Chem. Phys. Lett. 364, 180 (2002).https://doi.org/10.1016/S0009-2614(02)01329-5

  7. F. Esposito, I. Armenise, G. Capitta, and M. Capitelli, Chem. Phys. 351, 91 (2008). https://doi.org/10.1016/j.chemphys.2008.04.004

    Article  CAS  Google Scholar 

  8. D. A. Andrienko and I. D. Boyd, J. Chem. Phys. 144, 104301 (2016). https://doi.org/10.1063/1.4943114

  9. D. A. Andrienko, J. Chem. Phys. 152, 044305 (2020). https://doi.org/10.1063/1.5142191

  10. M. S. Grover, T. E. Schwartzentruber, Z. Varga, and D. G. Truhlar, J. Thermophys. Heat Transfer 33, 797 (2019). https://doi.org/10.2514/1.T5551

    Article  CAS  Google Scholar 

  11. Z. Varga, Y. Paukku, and D. G. Truhlar, J. Chem. Phys. 147, 154312 (2017). https://doi.org/10.1063/1.4997169

  12. G. Lendvay, J. Phys. Chem. A 123, 10230 (2019). https://doi.org/10.1021/acs.jpca.9b07393

    Article  CAS  PubMed  Google Scholar 

  13. M. Kulakhmetov, M. Gallis, and A. Alexeenko, J. Chem. Phys. 144, 174302 (2016).

  14. T. K. Mankodi, U. V. Bhandarkar, and B. P. Puranik, J. Chem. Phys. 146, 204307 (2017).

  15. A. Varandas and A. Pais, Mol. Phys. 65, 843 (1988). https://doi.org/10.1080/00268978800101451

    Article  CAS  Google Scholar 

  16. D. G. Truhlar and J. T. Muckerman, in Atom-Molecule Collision Theory: A Guide for the Experimentalist, Ed. by R. B. Bernstein (Springer US, Boston, MA, 1979), p. 505.

    Google Scholar 

  17. G. D. Billing and E. Fisher, Chem. Phys. 43, 395 (1979).https://doi.org/10.1016/0301-0104(79)85207-6

  18. P.-Y. Zhang and K.-L. Han, Int. J. Quantum. Chem. 115, 738 (2015). https://doi.org/10.1002/qua.24880

    Article  CAS  Google Scholar 

  19. D. Babikov, B. K. Kendrick, R. B. Walker, et al., J. Chem. Phys. 118, 6298 (2003). https://doi.org/10.1063/1.1557936

    Article  CAS  Google Scholar 

  20. V. G. Tyuterev, R. V. Kochanov, S. A. Tashkun, et al., J. Chem. Phys. 139, 134307 (2013). https://doi.org/10.1063/1.4821638

  21. M. Ayouz and D. Babikov, J. Chem. Phys. 138, 164311 (2013). https://doi.org/10.1063/1.4799915

  22. R. Dawes, P. Lolur, A. Li, B. Jiang, and H. Guo, J. Chem. Phys. 139, 201103 (2013).

  23. F. Holka, P. G. Szalay, T. Muller, and V. G. Tyuterev, J. Phys. Chem. A 114, 9927 (2010). https://doi.org/10.1021/jp104182q

    Article  CAS  PubMed  Google Scholar 

  24. V. C. Mota, P. Caridade, and A. J. C. Varandas, J. Phys. Chem. A 116, 3023 (2012). https://doi.org/10.1021/jp104182q

    Article  CAS  PubMed  Google Scholar 

  25. B. R. L. Galvao and A. J. C. Varandas, J. Phys. Chem. A 115, 12390 (2011). https://doi.org/10.1021/jp2073396

    Article  CAS  PubMed  Google Scholar 

  26. Y. Li and A. J. C. Varandas, J. Phys. Chem. A 116, 4646 (2012). https://doi.org/10.1021/jp302173h

    Article  CAS  PubMed  Google Scholar 

  27. M. Kulakhmetov, M. Gallis, and A. Alexeenko, Phys. Fluids 27, 087104 (2015).

  28. E. E. Nikitin, Theory of Elementary Atomic and Molecular Processes in Gases (Clarendon, Oxford, 1974).

    Google Scholar 

  29. R. Jaffe, D. Schwenke, and G. Chaban, AIAA Paper 2009-1569 (AIAA, 2009).

  30. J. G. Kim and I. D. Boyd, Phys. Fluids 26, 012006 (2014).

  31. K.-L. Han, G.-Z. He, and N.-Q. Lou, J. Chem. Phys. 105, 8699 (1996). https://doi.org/10.1063/1.472651

    Article  CAS  Google Scholar 

  32. W. L. Hase, R. J. Duchovic, X. Hu, et al., Quantum Chem. Program Exch. Bull. 16, 671 (1996).

    Google Scholar 

  33. C. Park, Nonequilibrium Hypersonic Aerothermodynamics (Wiley, Chichester, 1990).

    Google Scholar 

  34. A. Gross and G. D. Billing, Chem. Phys. 217, 1 (1997).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge the financial support from the National Natural Science Foundation of China (grant nos. 11774248, 11974253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlu Cheng.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Lu, Y. & Cheng, X. State-Specific Dynamic Study of the Exchange and Dissociation Reaction for O(3P) and O2(\({}^{3}\Sigma _{g}^{ - }\)) Collision by Quasi-Classical Trajectory. Russ. J. Phys. Chem. 96, 876–883 (2022). https://doi.org/10.1134/S0036024422040331

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422040331

Keywords:

Navigation