Abstract
Enthalpies of dilution of solutions of urea (U) in formamide (FA) and ethylene glycol (EG), and solutions of tetramethylurea (TMU) in FA, are measured at 298.15 K to study displays of solvophilic and solvophobic effects in solvents with a spatial hydrogen-bond network. Homotactic enthalpic coefficients of pair (h22) and triple (h222) interactions between solvated molecules of the solute (U or TMU) are calculated from the calorimetric results. Calculated values are compared to literature data for U and TMU solutions in water (H2O) and TMU solutions in EG. It is established that unlike the effects of 2–2 interaction in (EG + U) and (H2O + U) systems, the h22 parameter for U in FA has a positive sign and is quite low in absolute value (~160 J kg mol−2). It is therefore concluded that there is complementarity in Н-bond-associated structures of the solvent (in bulk) and the U–FA solvatocomplex formed in it. The character of distribution of the h22 values for TMU in the FA (~587) < EG (~649) \( \ll \) H2O (~2346 J kg mol−2) series of solvating media is evidence of the considerably greater role of solvophobic effects in aqueous solution.
Similar content being viewed by others
REFERENCES
F. Franks, M. Pedley, and D. S. Reid, J. Chem. Soc., Faraday Trans. 1 72, 359 (1976). https://doi.org/10.1039/F19767200359
G. Barone, P. Cacace, G. Castronuovo, and V. Elia, J. Chem. Soc., Faraday Trans. 1 77, 1569 (1981). https://doi.org/10.1039/F19817701569
E. V. Ivanov and D. V. Batov, Thermochim. Acta 523, 253 (2011). https://doi.org/10.1016/j.tca.2011.05.019
E. V. Ivanov and D. V. Batov, J. Chem. Thermodyn. 102, 9 (2016). https://doi.org/10.1016/j.jct.2016.06.020
E. V. Ivanov and D. V. Batov, J. Chem. Thermodyn. 128, 159 (2019). https://doi.org/10.1016/j.jct.2018.08.022
E. V. Ivanov, A. V. Kustov, D. V. Batov, et al., J. Mol. Liq. 317, 113994 (2020). https://doi.org/10.1016/j.molliq.2020.113994
A. V. Kustov and E. V. Ivanov, in Advances in Thermodynamics Research, Ed. by J. A. Cobb (Nova Science, New York, 2021), p. 75.
V. K. Abrosimov, E. V. Ivanov, and D. V. Batov, Russ. J. Phys. Chem. A 80, 1795 (2006).
V. K. Abrosimov, E. V. Ivanov, and D. D. Batov, Dokl. Phys. Chem. 407, 102 (2006).
M. N. Rodnikova and N. A. Chumaevskii, Zh. Strukt. Khim. 47 (7), S154 (2006).
M. N. Rodnikova, in Structural Self-Organization in Solutions and at the Interface, Ed. by A. Yu. Tsivadze (LKI, Moscow, 2008), p. 151 [in Russian].
M. N. Rodnikova, G. M. Agayan, and N. K. Balabaev, J. Mol. Liq. 283, 374 (2019). https://doi.org/10.1016/j.molliq.2019.03.090
A. V. Kustov and N. L. Smirnova, J. Phys. Chem. B 115, 14551 (2011). https://doi.org/10.1021/jp205331y
I. A. Sedov, M. A. Stolov, and B. N. Solomonov, J. Chem. Thermodyn. 64, 120 (2013). https://doi.org/10.1016/j.jct.2013.05.006
M. A. Stolov, K. V. Zaitseva, M. A. Varfolomeev, and W. E. Acree, Thermochim. Acta 648, 91 (2017). https://doi.org/10.1016/j.tca.2016.12.015
E. V. Ivanov, A. V. Kustov, and E. Yu. Lebedeva, J. Chem. Thermodyn. 135, 336 (2019). https://doi.org/10.1016/j.jct.2019.04.009
A. V. Kustov, N. L. Smirnova, and O. A. Antonova, J. Chem. Thermodyn. 130, 114 (2019). https://doi.org/10.1016/j.jct.2018.09.033
E. V. Ivanov, A. V. Kustov, and E. Yu. Lebedeva, J. Chem. Eng. Data 64, 5886 (2019). https://doi.org/10.1021/acs.jced.9b00794
A. V. Kustov, D. V. Batov, and T. R. Usacheva, Calorimetry of Non-electrolyte Solutions: Theoretical Foundations, Experiment, Data Analysis, Ed. by V. A. Sharnin (Krasand, Moscow, 2016), p. 33 [in Russian].
W. G. McMillan and J. E. Mayer, J. Chem. Phys. 13, 276 (1945). https://doi.org/10.1063/1.1668700
D. Hamilton and R. H. Stokes, J. Sol. Chem. 1, 223 (1972). https://doi.org/10.1007/BF00645103
F. Franks and M. D. Pedley, J. Chem. Soc., Faraday Trans. 1 77, 1341 (1981). https://doi.org/10.1039/F19817701341
A. V. Kustov and N. L. Smirnova, J. Chem. Eng. Data 55, 3055 (2010). https://doi.org/10.1021/je9010689
W. Blokzijl and J. B. F. N. Engberts, Angew. Chem., Int. Ed. 32, 1545 (1993). https://doi.org/10.1002/anie.199315451
Yu. M. Kessler and A. L. Zaitsev, Solvophobic Effects. Theory, Experiment, Practice (Khimiya, Leningrad, 1989) [in Russian].
A. V. Kustov, Hydrophobic Effects: Structural, Thermodynamic, Applied Aspects. Recent Achievements (Krasand, Moscow, 2013) [in Russian].
D. Hamilton and R. H. Stokes, J. Sol. Chem. 1, 213 (1972). https://doi.org/10.1007/BF00645102
R. H. Stokes, Austral. J. Chem. 20, 2087 (1967). https://doi.org/10.1071/CH9672087
S. Wüzburger, R. Sartorio, G. Guarino, and M. Nisi, J. Chem. Soc., Faraday Trans. 1 84, 2279 (1988). https://doi.org/10.1039/F19888402279
ACKNOWLEDGMENTS
The authors are grateful to A.V. Kustov for his assistance in interpreting our experimental and analytical results.
The chemicals used in our experiments were tested on equipment at the Krestov Institute of Solution Chemistry’s Upper Volga Regional Center of Physicochemical Research.
Funding
This work was supported by the Russian Foundation for Basic Research, project no. 18-03-00016-a.
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by Z. Smirnova
Rights and permissions
About this article
Cite this article
Batov, D.V., Ivanov, E.V. Comparative Characteristics of the Enthalpy Parameters of Interaction between Urea and Tetramethylurea Molecules in Formamide, Ethylene Glycol, and Water at 298.15 K. Russ. J. Phys. Chem. 96, 691–695 (2022). https://doi.org/10.1134/S0036024422040069
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0036024422040069