Skip to main content
Log in

Comparative Characteristics of the Enthalpy Parameters of Interaction between Urea and Tetramethylurea Molecules in Formamide, Ethylene Glycol, and Water at 298.15 K

  • ON THE 90th ANNIVERSARY OF THE BIRTH OF G.A. KRESTOV
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Enthalpies of dilution of solutions of urea (U) in formamide (FA) and ethylene glycol (EG), and solutions of tetramethylurea (TMU) in FA, are measured at 298.15 K to study displays of solvophilic and solvophobic effects in solvents with a spatial hydrogen-bond network. Homotactic enthalpic coefficients of pair (h22) and triple (h222) interactions between solvated molecules of the solute (U or TMU) are calculated from the calorimetric results. Calculated values are compared to literature data for U and TMU solutions in water (H2O) and TMU solutions in EG. It is established that unlike the effects of 2–2 interaction in (EG + U) and (H2O + U) systems, the h22 parameter for U in FA has a positive sign and is quite low in absolute value (~160 J kg mol−2). It is therefore concluded that there is complementarity in Н-bond-associated structures of the solvent (in bulk) and the U–FA solvatocomplex formed in it. The character of distribution of the h22 values for TMU in the FA (~587) < EG (~649) \( \ll \) H2O (~2346 J kg mol−2) series of solvating media is evidence of the considerably greater role of solvophobic effects in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. F. Franks, M. Pedley, and D. S. Reid, J. Chem. Soc., Faraday Trans. 1 72, 359 (1976). https://doi.org/10.1039/F19767200359

    Article  CAS  Google Scholar 

  2. G. Barone, P. Cacace, G. Castronuovo, and V. Elia, J. Chem. Soc., Faraday Trans. 1 77, 1569 (1981). https://doi.org/10.1039/F19817701569

    Article  CAS  Google Scholar 

  3. E. V. Ivanov and D. V. Batov, Thermochim. Acta 523, 253 (2011). https://doi.org/10.1016/j.tca.2011.05.019

    Article  CAS  Google Scholar 

  4. E. V. Ivanov and D. V. Batov, J. Chem. Thermodyn. 102, 9 (2016). https://doi.org/10.1016/j.jct.2016.06.020

    Article  CAS  Google Scholar 

  5. E. V. Ivanov and D. V. Batov, J. Chem. Thermodyn. 128, 159 (2019). https://doi.org/10.1016/j.jct.2018.08.022

    Article  CAS  Google Scholar 

  6. E. V. Ivanov, A. V. Kustov, D. V. Batov, et al., J. Mol. Liq. 317, 113994 (2020). https://doi.org/10.1016/j.molliq.2020.113994

  7. A. V. Kustov and E. V. Ivanov, in Advances in Thermodynamics Research, Ed. by J. A. Cobb (Nova Science, New York, 2021), p. 75.

    Google Scholar 

  8. V. K. Abrosimov, E. V. Ivanov, and D. V. Batov, Russ. J. Phys. Chem. A 80, 1795 (2006).

    Article  CAS  Google Scholar 

  9. V. K. Abrosimov, E. V. Ivanov, and D. D. Batov, Dokl. Phys. Chem. 407, 102 (2006).

    Article  CAS  Google Scholar 

  10. M. N. Rodnikova and N. A. Chumaevskii, Zh. Strukt. Khim. 47 (7), S154 (2006).

    Google Scholar 

  11. M. N. Rodnikova, in Structural Self-Organization in Solutions and at the Interface, Ed. by A. Yu. Tsivadze (LKI, Moscow, 2008), p. 151 [in Russian].

    Google Scholar 

  12. M. N. Rodnikova, G. M. Agayan, and N. K. Balabaev, J. Mol. Liq. 283, 374 (2019). https://doi.org/10.1016/j.molliq.2019.03.090

    Article  CAS  Google Scholar 

  13. A. V. Kustov and N. L. Smirnova, J. Phys. Chem. B 115, 14551 (2011). https://doi.org/10.1021/jp205331y

    Article  CAS  PubMed  Google Scholar 

  14. I. A. Sedov, M. A. Stolov, and B. N. Solomonov, J. Chem. Thermodyn. 64, 120 (2013). https://doi.org/10.1016/j.jct.2013.05.006

    Article  CAS  Google Scholar 

  15. M. A. Stolov, K. V. Zaitseva, M. A. Varfolomeev, and W. E. Acree, Thermochim. Acta 648, 91 (2017). https://doi.org/10.1016/j.tca.2016.12.015

    Article  CAS  Google Scholar 

  16. E. V. Ivanov, A. V. Kustov, and E. Yu. Lebedeva, J. Chem. Thermodyn. 135, 336 (2019). https://doi.org/10.1016/j.jct.2019.04.009

    Article  CAS  Google Scholar 

  17. A. V. Kustov, N. L. Smirnova, and O. A. Antonova, J. Chem. Thermodyn. 130, 114 (2019). https://doi.org/10.1016/j.jct.2018.09.033

    Article  CAS  Google Scholar 

  18. E. V. Ivanov, A. V. Kustov, and E. Yu. Lebedeva, J. Chem. Eng. Data 64, 5886 (2019). https://doi.org/10.1021/acs.jced.9b00794

    Article  CAS  Google Scholar 

  19. A. V. Kustov, D. V. Batov, and T. R. Usacheva, Calorimetry of Non-electrolyte Solutions: Theoretical Foundations, Experiment, Data Analysis, Ed. by V. A. Sharnin (Krasand, Moscow, 2016), p. 33 [in Russian].

    Google Scholar 

  20. W. G. McMillan and J. E. Mayer, J. Chem. Phys. 13, 276 (1945). https://doi.org/10.1063/1.1668700

    Article  CAS  Google Scholar 

  21. D. Hamilton and R. H. Stokes, J. Sol. Chem. 1, 223 (1972). https://doi.org/10.1007/BF00645103

    Article  CAS  Google Scholar 

  22. F. Franks and M. D. Pedley, J. Chem. Soc., Faraday Trans. 1 77, 1341 (1981). https://doi.org/10.1039/F19817701341

    Article  CAS  Google Scholar 

  23. A. V. Kustov and N. L. Smirnova, J. Chem. Eng. Data 55, 3055 (2010). https://doi.org/10.1021/je9010689

    Article  CAS  Google Scholar 

  24. W. Blokzijl and J. B. F. N. Engberts, Angew. Chem., Int. Ed. 32, 1545 (1993). https://doi.org/10.1002/anie.199315451

    Article  Google Scholar 

  25. Yu. M. Kessler and A. L. Zaitsev, Solvophobic Effects. Theory, Experiment, Practice (Khimiya, Leningrad, 1989) [in Russian].

    Google Scholar 

  26. A. V. Kustov, Hydrophobic Effects: Structural, Thermodynamic, Applied Aspects. Recent Achievements (Krasand, Moscow, 2013) [in Russian].

    Google Scholar 

  27. D. Hamilton and R. H. Stokes, J. Sol. Chem. 1, 213 (1972). https://doi.org/10.1007/BF00645102

    Article  CAS  Google Scholar 

  28. R. H. Stokes, Austral. J. Chem. 20, 2087 (1967). https://doi.org/10.1071/CH9672087

    Article  CAS  Google Scholar 

  29. S. Wüzburger, R. Sartorio, G. Guarino, and M. Nisi, J. Chem. Soc., Faraday Trans. 1 84, 2279 (1988). https://doi.org/10.1039/F19888402279

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Kustov for his assistance in interpreting our experimental and analytical results.

The chemicals used in our experiments were tested on equipment at the Krestov Institute of Solution Chemistry’s Upper Volga Regional Center of Physicochemical Research.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-03-00016-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Batov.

Additional information

Translated by Z. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batov, D.V., Ivanov, E.V. Comparative Characteristics of the Enthalpy Parameters of Interaction between Urea and Tetramethylurea Molecules in Formamide, Ethylene Glycol, and Water at 298.15 K. Russ. J. Phys. Chem. 96, 691–695 (2022). https://doi.org/10.1134/S0036024422040069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422040069

Keywords:

Navigation