Skip to main content
Log in

Removal Mechanisms of Phenanthrene and Benzo(a)pyrene from Wastewater by Combining Bacillus subtilis with Ferrate

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A new method that combines Bacillus subtilis (B. subtilis) with K2FeO4 has been developed to enhance the degradation of phenanthrene (Phe) and benzo(a)pyrene (BaP) in wastewater. The results showed that (i) BaP and Phe after pre-oxidation with K2FeO4 were more easily bio-degraded by the cooperating methods, showed faster kinetics and shorter half-life (t1/2); (ii) removal rate of Phe was always higher than that of BaP in the whole oxidation-biodegradation process; (iii) the optimal parameters for the combination experiments were as follows: the ratio of K2FeO4 and the sum of two contaminants of 10 : 1 (m : m), 10% (v : v) of B. subtilis, an initial pH of 8.0 at 30°C with 250 rpm at the stage of oxidation, and 100 rpm at the stage of both biodegradation and adsorption. Under the above optimal conditions, the removal rate of Chemical Oxygen Demand (CODcr), Phe, and BaP were 59.0, 93.9, and 86.93%, respectively. Based on the experimental results, the mechanism of simultaneous removal of Phe and BaP was elucidated. The three main stages during the whole removal process included oxidation, adsorption, and bio-degradation steps. The degradation rate of BaP contributed more to the removal rate of total BaP than the adsorption did at the end of the experiments, while its oxidation rate was almost constant. The same trends applied for the Phe removal. When the above method and conditions were applied for two kinds of field wastewater, the removal rate of Phe and BaP, in the end, was higher than that of the pure laboratory samples, although the removal rate was a little low in the initial stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. Vila, M. Tauler, and M. Grifoll, Curr. Opin. Biotechnol. 33, 95 (2015).

    Article  CAS  Google Scholar 

  2. F. X. Zhu, S. Storey, M. M. Ashaari, N. Clipson, and E. Doyle, Environ. Sci. Pollut. Res. 24, 5404 (2017).

    Article  CAS  Google Scholar 

  3. G. D. Sayles, C. M. Acheson, M. J. Kupferle, Y. Shan, Q. Zhou, J. R. Meier, L. Chang, and R. C. Brenner, Environ. Sci. Technol. 33, 4310 (1999).

    Article  CAS  Google Scholar 

  4. J. W. Talley, U. Ghosh, S. G. Tucker, J. S. Furey, and R. G. Luthy, Environ. Sci. Technol. 36, 477 (2002).

    Article  CAS  Google Scholar 

  5. S. N. Chen, H. Yin, and J. Chang, J. Hazard. Mater. 321, 9 (2017).

    Article  CAS  Google Scholar 

  6. S. N. Chen, H. Yin, S. Y. Tang, H. Peng, and Z. Dang, Bioresour. Technol. 24, 26 (2016).

    Article  CAS  Google Scholar 

  7. N. Nader, R. Bikas, M. Emami, M. Siczek, and T. Lis, Polyhedron 111, 167 (2016).

    Article  Google Scholar 

  8. M. Kastner and B. Mahro, Appl. Microbiol. Biotechnol. 44, 668 (1996).

    Article  CAS  Google Scholar 

  9. C. E. Cerniglia, Biodegradation 3, 351 (1992).

    Article  CAS  Google Scholar 

  10. W. Yan, S. S. Liu, Z. Q. Wang, Z. C. Wang, and S. Z. Wang, Water Air Soil Pollut. 228, 233 (2017).

    Article  Google Scholar 

  11. M. A. Baboshin and L. A. Golovleva, Microbiology 81, 695 (2012).

    Article  CAS  Google Scholar 

  12. N. Kyoungphile, R. Wilson, and J. K. Jerome, Chemistry 45, 11 (2001).

    Google Scholar 

  13. S. Y. Zang, P. J. Li, B. Lian, and J. Wang, J. Environ. Sci. 25, 1 (2008).

    Google Scholar 

  14. C. Rafin, E. Veignie, A. Fayeulle, and G. Surpateanu, Bioresour. Technol. 100, 3157 (2009).

    Article  CAS  Google Scholar 

  15. Z. Zhou and J. Q. Jiang, J. Pharm. Biomed. Anal. 106, 37 (2015).

    Article  CAS  Google Scholar 

  16. K. Manoli, G. Nakhla, A. K. Ray, and V. K. Shama, Chem. Eng. J. 307, 513 (2017).

    Article  CAS  Google Scholar 

  17. S. F. Sun, Y. L. Liu, J. Ma, S. Y. Pang, Z. S. Huang, J. Gu, Y. Gao, M. Xue, Y. X. Yuan, and L. Jiang, Chem. Eng. J. 332, 245 (2018).

    Article  CAS  Google Scholar 

  18. J. K. Cui, L. Zheng, and Y. Deng, Environ. Sci., Water Res. Technol. 4, 359 (2018).

    Article  CAS  Google Scholar 

  19. L. Machala, V. Prochazka, M. Miglierini, V. K. Sharma, Z. Marusak, H.-C. Wille, and R. Zboril, Phys. Chem. Chem. Phys. 17, 21787 (2015).

    Article  CAS  Google Scholar 

  20. P. K. Rai, J. Lee, S. K. Kailasa, E. E. Kwon, Y. F. Tsang, Y. S. Ok, and K. H. Kim, Environ. Res. 160, 420 (2018).

    Article  CAS  Google Scholar 

  21. C. J. Wang, N. Klamerth, S. A. Messele, A. Singh, M. Belosevic, and M. G. Eldin, Water Res. 100, 476 (2016).

    Article  CAS  Google Scholar 

  22. P. Zajíček, M. Kolár, R. Prucek, V. Ranc, P. Bednár, R. S. Varma, V. K. Sharma, and R. Zboril, Purif. Technol. 156, 1041 (2015).

    Article  Google Scholar 

  23. D. Su, P. J. Li, and F. Stagnitti, J. Environ. Sci. 18, 1204 (2006).

    Article  CAS  Google Scholar 

  24. S. Y. Zang, P. J. Li, X. C. Yu, K. Shi, H. Zhang, and J. Chen, J. Environ. Sci. 19, 238 (2007).

    Article  CAS  Google Scholar 

  25. P. Li, T. Sun, F. Stagnitti, C. Zhang, H. Zhang, X. Xiong, G. Allinson, X. Ma, and M. Allinson, Environ. Sci. Technol. 5, 285 (2002).

    Google Scholar 

  26. N. Ertugay and F. N. Acar, Arab. J. Chem. 10, s1158 (2017).

    Article  CAS  Google Scholar 

  27. R. Kanaly, R. Bartha, S. Fogel, and M. Findlay, Appl. Environ. Microbiol. 63, 4511 (1997).

    Article  CAS  Google Scholar 

  28. F. Chen, Z. B. Luo, J. Ma, S. Y. Zeng, Y. J. Yang, and S. L. Zhang, Water Air Soil Pollut. 229, 114 (2018).

    Article  CAS  Google Scholar 

  29. F. S. Lang, J. Destain, F. Delvigne, P. Druart, M. Ongena, and P. Thonart, Water Air Soil Pollut. 227, 297 (2016).

    Article  Google Scholar 

  30. W. Wickle, J. Plant Nutr. Soil Sci. 163, 229 (2000).

    Article  Google Scholar 

  31. J. A. Rentz, P. J. J. Alvarez, and J. L. Schnoor, Environ. Pollut. 151, 669 (2008).

    Article  CAS  Google Scholar 

  32. A. L. Juhasz and R. Naidu, Int. Biodeterior. Biodegrad. 45, 57 (2000).

    Article  CAS  Google Scholar 

  33. R. A. Brown, C. Nelson, and M. Leahy, in In Situ and On-site Bioremediation, Ed. by B. C. Alleman and A. Leeson (Battelle, Columbus, OH, 1997).

    Google Scholar 

  34. Y. J. Jiang, J. E. Goodwill, J. E. Tobiason, and D. A. Reckhow, Environ. Sci. Technol. 49, 2841 (2015).

    Article  CAS  Google Scholar 

  35. S. Y. Zang, P. J. Li, W. X. Li, D. Zhang, and A. Hamilton, Chemosphere 67, 1368 (2007).

    Article  CAS  Google Scholar 

  36. A. S. Tsibart and A. N. Gennadiev, Euras. Soil Sci., 788 (2013).

  37. X. Wang, Y. Liu, Z. Huang, L. Wang, Y. Wang, Y. Li, J. Li, J. Qi, and J. Ma, Water Res. 144, 592 (2018).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (grant nos. 41773136 and 41703129), Innovation Talent Support Project of Liaoning (grant no. LR2017073), the National Key R and D Program of China (no. 2017YFD0800301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuyan Zang or Mario Alberto Gomez.

Ethics declarations

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, S., Zhao, Q., Gomez, M.A. et al. Removal Mechanisms of Phenanthrene and Benzo(a)pyrene from Wastewater by Combining Bacillus subtilis with Ferrate. Russ. J. Phys. Chem. 95 (Suppl 2), S242–S251 (2021). https://doi.org/10.1134/S0036024421150267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421150267

Keywords:

Navigation