Skip to main content
Log in

Selective Oxidation of L-Methionine, L-Ethionine, N-Acetyl-L-Methionine, L-Buthionine Catalyzed by [FeIII-Salen]Cl Complexes: A Spectral, Kinetic, and Electrochemical Study

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

This present study aims to report the spectral, kinetic, and electrochemical results of the selective oxidation of substrates such as L-methionine (I), L-ethinonine (II), L-buthionine (III), and N-acetyl-L-methionine (IV) with [O=FeIV-salen]\(^{{ \bullet + }}\) oxidant species 1a–5a in aqueous CH3CN under biological conditions. Reactions between oxidants and the substrates follow saturation kinetics (Michalis-Menton type), and this reaction is very sensitive with the substituents present in salen ligand of the complex, structure of substrates I–IV, the effects of pH, substrate concentration, the polarity of the solvent, and temperature. The [O=FeIV-salen]\(^{{ \bullet + }}\) oxidant species is confirmed by spectral and electrochemical techniques. The positive reaction constants (ρ = 0.79–0.90) are obtained from the plot of rate constant (k) values versus substituent constants (σ) values, which indicates the development of negative charge in the transition state (TS). The formation of the product during the course of reaction is analyzed by FT-IR, ESI-MS, and 1H-NMR techniques. Based on the experimental evidences a plausible electron transfer (ET) and oxygen atom transfer (OAT) mechanisms have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Chart 1.
Scheme 2.
Scheme 3.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Scheme 4.
Scheme 5.

Similar content being viewed by others

REFERENCES

  1. X. Lu, Y. Lee, M. S. Seo, and W. Nam, Chem. Commun. 76, 11207 (2020). https://doi.org/10.1039/D0CC05145D

    Article  Google Scholar 

  2. T. R. Ward, ACS Cent. Sci. 5, 1732 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. L. Vicens, G. Olivo, and M. Costas, ACS Catal. 10, 8611–8631 (2020). https://doi.org/10.1021/ACSCatal.0c02073

  4. V. A. Larson, B. Battistella, K. Ray, et al., Nat. Rev. Chem. 4, 404 (2020).

    CAS  Google Scholar 

  5. G. Olivo, O. Cussó, M. Borrell, and M. Costas, J. Biol. Inorg. Chem., Nos. 2–3, 425 (2017).

    Google Scholar 

  6. S. P. de Visser and D. Kumar, Iron-Containing Enzymes Versatile Catalysts of Hydroxylation Reaction in Nature (RSC, Cambrige, UK, 2011).

    Google Scholar 

  7. J. C. Lewis, ACS Catal. 3, 2954 (2013).

    CAS  Google Scholar 

  8. S. Shaik, S. Cohen, Y. Wang, et al., Chem. Rev. 110, 949 (2010).

    CAS  PubMed  Google Scholar 

  9. V. K. Sivasubramanian, M. Ganesan, S. Rajagopal, and R. Ramaraj, J. Org. Chem. 67, 1506 (2002).

    CAS  PubMed  Google Scholar 

  10. A. Mary Imelda Jayaseeli and S. Rajagopal, J. Mol. Catal. A: Chem. 309, 103 (2009).

    Google Scholar 

  11. A. Mohamed Aslam, S. Rajagopal, M. Vairamani, and M. Ravikumar, Trans. Met. Chem. 36, 751 (2011).

    Google Scholar 

  12. R. M. Clarke, K. Herasymchuk, and T. Storr, Coord. Chem. Rev. 352, 67 (2017).

    CAS  Google Scholar 

  13. A. Chellamani, N. M. I. Alhaji, and S. Rajagopal, J. Chem. Soc. Perkin Trans. 2, 299 (1997).

    Google Scholar 

  14. J. C. Pessoa and I. Correia, Coord. Chem. Rev. 388, 227 (2019).

    CAS  Google Scholar 

  15. N. S. Venkataramanan, S. Premsingh, S. Rajagopal, and K. Pitchumani, J. Org. Chem. 68, 7460 (2003).

    CAS  PubMed  Google Scholar 

  16. A. Erxleben, Inorg. Chim. Acta 472, 40 (2018).

    CAS  Google Scholar 

  17. A. Lidskog, Y. Li, and K. Wärnmark, Catalysts 10, 705 (2020).

    CAS  Google Scholar 

  18. N. S. Venkataramanan, S. Rajagopal, and M. Vairamani, J. Inorg. Biochem. 101, 274 (2007).

    CAS  PubMed  Google Scholar 

  19. A. Chellamani, N. Ismail Alhaji, and S. Rajagopal, J. Phys. Org. Chem. 20, 255 (2007).

    CAS  Google Scholar 

  20. D. Thiruppathi, P. Karuppasamy, M. Ganesan, et al., Int. J. Chem. Kinet. 46, 606 (2014).

    CAS  Google Scholar 

  21. D. Thiruppathi, P. Karuppasamy, M. Ganesan, et al., J. Photochem. Photobiol. A 295, 70 (2014).

    CAS  Google Scholar 

  22. C. Kavitha and P. Subramaniam, Polyhedron 189, 114712 (2020).

    CAS  Google Scholar 

  23. C. Kavitha and P. Subramaniam, Polyhedron 175, 114172 (2020).

    CAS  Google Scholar 

  24. G. Olivo, O. Lanzalunga, and S. D. Stefano, Adv. Synth. Catal. 358, 843 (2016).

    CAS  Google Scholar 

  25. H. Pellissier, Coord. Chem. Rev. 284, 93 (2015).

    CAS  Google Scholar 

  26. E. I. Solomon, Inorg. Chem. 40, 3656 (2001).

    CAS  PubMed  Google Scholar 

  27. M. J. Ryle and R. P. Hausinger, Curr. Opin. Chem. Biol. 6, 193 (2002).

    CAS  PubMed  Google Scholar 

  28. C. A. Grapperhaus, B. Mienert, E. Bill, et al., Inorg. Chem. 39, 5306 (2000).

    CAS  PubMed  Google Scholar 

  29. Y. M. Kim, K. B. Cho, J. Cho, et al., J. Am. Chem. Soc. 135, 8838 (2013).

    CAS  PubMed  Google Scholar 

  30. S. P. de Visser, J. U. Rohde, Y. M. Lee, et al., Coord. Chem. Rev. 257, 381 (2013).

    CAS  Google Scholar 

  31. A. R. McDonald and L. Que, Jr., Coord. Chem. Rev. 257, 414 (2013).

    CAS  Google Scholar 

  32. S. Shaik, S. Cohen, Y. Wang, et al., Chem. Rev. 110, 949 (2010).

    CAS  PubMed  Google Scholar 

  33. A. Gunay and K. H. Theopold, Chem. Rev. 110, 1060 (2010).

    CAS  PubMed  Google Scholar 

  34. C.-M. Che, V. K. Y. Lo, C. Y. Zhou, and J. S. Huang, Chem. Soc. Rev. 40, 1950 (2011).

    CAS  PubMed  Google Scholar 

  35. M. Costas, Coord. Chem. Rev. 255, 2912 (2011).

    CAS  Google Scholar 

  36. K. Cho, P. Leeladee, A. J. McGown, et al., J. Am. Chem. Soc. 134, 7392 (2012).

    CAS  PubMed  Google Scholar 

  37. S. Hong, Y. M. Lee, K. B. Cho, et al., J. Am. Chem. Soc. 133, 11876 (2011).

    CAS  PubMed  Google Scholar 

  38. H. Tang, J. Guan, L. Zhang, et al., Phys. Chem. Chem. Phys. 14, 12863 (2012).

    CAS  PubMed  Google Scholar 

  39. D. Kumar, G. N. Sastry, and S. P. de Visser, J. Phys. Chem. B 116, 718 (2012).

    CAS  PubMed  Google Scholar 

  40. T. Ohta, J. G. Liu, and Y. Naruta, Coord. Chem. Rev. 257, 407 (2013).

    CAS  Google Scholar 

  41. W. Nam, Y. M. Lee, and S. Fukuzumi, Acc. Chem. Res. 47, 1146 (2014).

    CAS  PubMed  Google Scholar 

  42. E. R. Stadtman, H. V. Remmen, A. Richardson, et al., Biochim. Biophys. Acta 1703, 135 (2005).

    CAS  PubMed  Google Scholar 

  43. B. C. Lee, A. Dikiy, H. Y. Kim, and V. N. Gladyshev, Biochim. Biophys. Acta 1790, 1471 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. H. Y. Kim and V. N. Gladyshev, Mol. Biol. Cell 15, 1055 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. J. D. Meyer, B. Ho, and M. C. Manning, Rational Design of Stable Protein Formulations: Theory and Practice, Ed. by J. F. Carpenter and M. C. Manning (Kluwer Academic, Plenum, New York, 2002), p. 85.

    Google Scholar 

  46. D. A. Ferrington, H. Sun, K. K. Murray, et al., J. Biol. Chem. 276, 937 (2001).

    CAS  PubMed  Google Scholar 

  47. N. R. Matheson and P. S. Wong, J. Biochem. Biophys. Res. Commun. 88, 402 (1979).

    CAS  Google Scholar 

  48. L. C. The, L. J. Murphy, N. L. Huq, et al., J. Biol. Chem. 262, 6477 (1987).

    Google Scholar 

  49. R. A. Depaz, C. C. Barnett, D. A. Dale, et al., Arch. Biochem. Biophys. 384, 123 (2000).

    CAS  PubMed  Google Scholar 

  50. H. S. Lu, P. R. Fausset, L. O. Narthi, et al., Arch. Biochem. Biophys. 362, 1 (1999).

    CAS  PubMed  Google Scholar 

  51. M. J. Wood, J. Helena Prieto, and E. A. Komives, Biochem. Biophys. Acta 1703, 141 (2005).

    CAS  PubMed  Google Scholar 

  52. E. R. Stadtman and C. N. Oliver, J. Biol. Chem. 266, 2005 (1991).

    CAS  PubMed  Google Scholar 

  53. E. R. Stadtman, Science (Washington, DC, U. S.) 257, 1220 (1992).

    CAS  Google Scholar 

  54. K. Merker, N. Sitte, and T. Grune, Arch. Biochem. Biophys. 375, 50 (2000).

    CAS  PubMed  Google Scholar 

  55. M. J. Hokenson, V. N. Uversky, J. Goers, et al., Biochemistry 43, 4621 (2004).

    CAS  PubMed  Google Scholar 

  56. W. R. Markesbery, Free Radical. Biol. Med. 23, 134 (1997).

    CAS  Google Scholar 

  57. D. A. Butterfield and R. Sultana, J. Amino Acids 2011, 10 (2011).

    Google Scholar 

  58. J. Hong and C. Schöneich, Free Radical. Biol. Med. 31, 1432 (2001).

    CAS  Google Scholar 

  59. A. I. Abouelatta, A. A. Campanali, A. R. Ekkati, et al., Inorg. Chem. 48, 7729 (2009).

    CAS  PubMed  Google Scholar 

  60. P. Karuppasamy, D. Thiruppathi, J. Vijaya Sundar, et al., Arab. J. Sci. Eng. 40, 2945 (2015).

    CAS  Google Scholar 

  61. N. Hessenauer-Ilicheva, A. Franke, D. Meyer, et al., J. Am. Chem. Soc. 129, 12473 (2007).

    CAS  PubMed  Google Scholar 

  62. P. Karuppasamy, D. Thiruppathi, J. Vijaya Sundar, et al., Polyhedron 114952, 196 (2021),

    Google Scholar 

  63. P. Karuppasamy, D. Thiruppathi, M. Ganesan, et al., Polyhedron 159, 135 (2019).

    CAS  Google Scholar 

  64. S. W. Griffiths and C. L. Cooney, Biochemistry 41, 6245 (2002).

    CAS  PubMed  Google Scholar 

  65. E. Derat, S. Shaik, C. Rovira, et al., J. Am. Chem. Soc. 129, 6346 (2007).

    CAS  PubMed  Google Scholar 

  66. T. Kurahashi, Y. Kobayashi, S. Nagamoto, et al., Inorg. Chem. 44, 8156 (2005).

    CAS  PubMed  Google Scholar 

  67. T. A. Enache and A. M. Oliveira-Brett, Bioelectrochem. 81, 46 (2011).

    CAS  Google Scholar 

  68. J. B. Raoof, R. Ojani, and Z. Mohammadpour, Anal. Bioanal. Electrochem. 2, 24 (2010).

    Google Scholar 

  69. H. Sugimoto, H. Tung, and D. H. Sawyer, J. Am. Chem. Soc. 110, 2465 (1988).

    CAS  Google Scholar 

  70. A. Takahashi, T. Kurahashi, and H. Fujii, Inorg. Chem. 50, 6922 (2011).

    CAS  PubMed  Google Scholar 

  71. T. M. Goto, S. Ozaki, Y. Watanabe, and S. Fukuzumi, J. Am. Chem. Soc. 121, 9497 (1999).

    CAS  Google Scholar 

  72. S. W. Griffiths and C. L. Cooney, Biochemistry 41, 6245 (2002).

    CAS  PubMed  Google Scholar 

  73. E. Derat, S. Shaik, C. Rovira, et al., J. Am. Chem. Soc. 129, 6346 (2007).

    CAS  PubMed  Google Scholar 

  74. R. Zhang, J. H. Horner, and M. Newcomb, J. Am. Chem. Soc. 127, 6573 (2005).

    CAS  PubMed  Google Scholar 

  75. T. Kurahashi, Y. Kobayashi, S. Nagamoto, et al., Inorg. Chem. 44, 8156 (2005).

    CAS  PubMed  Google Scholar 

  76. D. Selmar, in Annual Plant Reviews, Vol. 40: Biochemistry of Plant Secondary Metabolism, Ed. by O. Wink, 2nd ed. (Wiley, Chichester, 2010), Chap. 3, p. 92.

Download references

ACKNOWLEDGMENTS

The author thanks the PG and Research Department of Chemistry, Vivekananda College, Tiruvedakam West, Madurai-625 234 for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Periyakaruppan Karuppasamy.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karuppasamy, P. Selective Oxidation of L-Methionine, L-Ethionine, N-Acetyl-L-Methionine, L-Buthionine Catalyzed by [FeIII-Salen]Cl Complexes: A Spectral, Kinetic, and Electrochemical Study. Russ. J. Phys. Chem. 95 (Suppl 2), S230–S241 (2021). https://doi.org/10.1134/S0036024421150127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421150127

Keywords:

Navigation