Skip to main content
Log in

Recurrent Approximation of Retention Parameters of N-Substituted p-Toluenesulfonamides in Reversed-Phase High Performance Liquid Chromatography for Revealing the Formation of Their Hydrates

  • PHYSICAL CHEMISTRY OF SEPARATION PROCESSES. CHROMATOGRAPHY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Recurrent approximation of retention times in reversed-phase high performance liquid chromatography (RP-HPLC), tR(C + ΔC) = atR(C) + b, where C is the acetonitrile concentration in the eluent, and ΔC is the constant “step” of its variation, for six specially synthesized N-substituted p-toluenesulfonamides confirmed the presence of anomalies previously revealed for some complex polyfunctional organic compounds. The reason for these anomalies is the presence of sulfonamide –SO2–NH fragments in the molecules, which leads to hydration of sorbates in aqueous solutions, or, more precisely, to a change in the ratio of their non-hydrated and hydrated forms because of a shift in the equilibrium Х + Н2О \( \rightleftarrows \) Х·Н2О (*) as a result of a change in the eluent composition. The same effect is indicated by the strong antibatic dependence of the retention indices RI(C) of all sulfonamides under study; the coefficients dRI/dC vary from –1.9 to –4.0, these values being much higher in magnitude than for compounds that do not form hydrates. Further independent evidence in favor of the transformation of sorbates due to variation of the eluent composition is the dependence of the relative absorbance Arel = A(254)/A(220) on the acetonitrile content in the eluent. This suggests changes in the chemical nature of chromophores in sulfonamide molecules depending on the equilibrium state (*).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. For retention indices, IUPAC recommends the one-letter symbol “I.” However, it has other meanings (electric current, radiation intensity, peak intensity in mass spectra, etc.); as a result, expressions containing “I” symbols with different meanings can appear in chromatography. Therefore, we prefer the two-letter symbol RI.

REFERENCES

  1. J. D. Rawn and R. Quellette, Organic Chemistry, 2nd ed. (Academic, New York, 2019).

    Google Scholar 

  2. I. G. Zenkevich and D. A. Nikitina, Russ. J. Phys. Chem. A 95, 395 (2021). https://doi.org/10.1134/S003602442102028X

    Article  CAS  Google Scholar 

  3. M.-L. Guo, Crystallogr. Commun. 60, 574 (2004). https://doi.org/10.1107/S1600536804005446

    Article  CAS  Google Scholar 

  4. S. F. Suchetan, S. Foro, B. T. Gowda, and M. S. Prakash, Acta Crystallogr., Sect. E 68, o46 (2012). https://doi.org/10.1107/S1600536811051932

    Article  CAS  Google Scholar 

  5. A. Kompella, S. Kasa, V. S. Balina, et al., Sci. J. Chem. 2 (6–1), 9 (2014). https://doi.org/10.11648/j.sjc.s.2014020601.12

  6. M. Jatezak, K. Sidoryk, M. Kossykowska, et al., Chromatographia 79, 1131 (2016). https://doi.org/10.1007/s10337-016-3124y

    Article  Google Scholar 

  7. E. Jurczak, A. H. Mazurek, L. Szeleszczuk, et al., Pharmaceuticals 12, 1 (2020). https://doi.org/10.3390/pharmaceuticals12100959

    Article  Google Scholar 

  8. I. G. Zenkevich, J. Chemometr. 23, 179 (2009). https://doi.org/10.1002/cem.1214

    Article  CAS  Google Scholar 

  9. I. G. Zenkevich, in Chemometrics in Chromatography, Ed. by L. Komsta, Y. V. Heyden, and J. Sherma (CRC, London, 2018), Chap. 24, p. 449.

    Google Scholar 

  10. I. G. Zenkevich, J. Chemometr. 24, 158 (2010). https://doi.org/10.1002/cem.1297

    Article  CAS  Google Scholar 

  11. T. A. Kornilova, A. Deruish, and I. G. Zenkevich, Anal. Kontrol’ 24, 315 (2020). https://doi.org/10.15826/analitika.2020.24.4.006

    Article  Google Scholar 

  12. M. L. Peterson and J. Hirsch, J. Lipid Res. 1, 132 (1959).

    Article  CAS  Google Scholar 

  13. Yu. V. Patrushev, Yu. S. Sotnikova, and V. N. Sidel’nikov, Prot. Met. Phys. Chem. Surf. 56, 49 (2020). https://doi.org/10.1134/S2070205119060248

    Article  CAS  Google Scholar 

  14. S. N. Lanin, M. Y. Ledenkova, and Y. S. Nikitin, J. Chromatogr. A 797, 3 (1998).

    Article  CAS  Google Scholar 

  15. W. Zapala, J. Chromatogr. Sci. 41, 289 (2003).

    Article  CAS  Google Scholar 

  16. V. A. Chirkin, S. I. Karpov, and V. F. Selemenev, J. Anal. Chem. 68, 341 (2013). https://doi.org/10.1134/S10619348113020056

    Article  CAS  Google Scholar 

  17. B. R. Saifutdinov, V. A. Davankov, and M. M. Il’in, Russ. J. Phys. Chem. A 88, 358 (2014). https://doi.org/10.1134/S0036024414030224

    Article  CAS  Google Scholar 

  18. B. R. Saifutdinov, V. A. Davankov, G. A. Petukhova, M. P. Tsyurupa, Z. K. Blinnikova, and M. M. Il’in, Dokl. Phys. Chem. 462, 135 (2015). https://doi.org/10.1134/S0012501615060056

    Article  CAS  Google Scholar 

  19. A. S. Savchenkova, A. K. Buryak, and S. V. Kurbatova, Russ. J. Phys. Chem. A 89, 1662 (2015). https://doi.org/10.1134/S0036024415090277

    Article  CAS  Google Scholar 

  20. I. Canals, J. A. Portal, M. Roses, and E. Bosch, Chromatographia 55, 565 (2022).

    Article  Google Scholar 

  21. N. Sanli, S. Sanli, G. Ozkan, and A. Denizli, J. Braz. Chem. Soc. 21, 1952 (2010).

    CAS  Google Scholar 

  22. M. Remko, J. Mol. Struct.: THEOCHEM 941, 34 (2010). https://doi.org/10.1016/j.theochem.2009.12.017

    Article  CAS  Google Scholar 

  23. B. A. Caine, M. B. Bronzato, and L. A. Popelier, J. Chem. Sci. 10, 6368 (2019). https://doi.org/10.1039/c9sc01818b

    Article  CAS  Google Scholar 

  24. I. G. Zenkevich, M. V. Kochetova, O. G. Larionov, et al., J. Liq. Chromatogr. Rel. Technol. 28, 2141 (2005). https://doi.org/10.1081/JLC-200064000

    Article  CAS  Google Scholar 

  25. Encyclopedia of Chromatography, Ed. by J. Cazes, 3rd ed. (Taylor and Francis, New York, 2010), Vol. 2, p. 1304.

    Google Scholar 

  26. Retention and Selectivity in Liquid Chromatography, Vol. 57 of J. Chromatogr. Libr., Ed. by R. M. Smith (Elsevier, Amsterdam, 1995), p. 93.

    Google Scholar 

  27. Handbuch der Gaschromatographie, Herausgegeben, Ed. by E. Leibnitz and H. G. Struppe (Akademische Verlag, Leipzig, 1984).

  28. I. G. Zenkevich and V. M. Kosman, Russ. J. Appl. Chem. 70, 1770 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Zenkevich.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkevich, I.G., Nikitina, D.A. & Kornilova, T.A. Recurrent Approximation of Retention Parameters of N-Substituted p-Toluenesulfonamides in Reversed-Phase High Performance Liquid Chromatography for Revealing the Formation of Their Hydrates. Russ. J. Phys. Chem. 95, 1931–1941 (2021). https://doi.org/10.1134/S0036024421090326

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421090326

Keywords:

Navigation