Skip to main content
Log in

Investigation of Interactions between Sodium Dodecyl Sulfate and L-Tryptophan Through Densimetry and Computer Modeling

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The densities of solutions of L-tryptophan (Trp) in water and sodium dodecyl sulfate (SDS) in Trp aqueous solutions are measured in a wide range of temperatures (293.15, 298.15, 303.15, 308.15, and 313.15) K using a DMA 5000 М density meter (Anton Paar).The apparent molar volumes (\({{V}_{{\varphi ,{\text{SDS}}}}}\)) of sodium dodecyl sulfate in the 0.0010–0.0199 mol kg−1 range of concentrations and its limiting apparent molar volumes at infinite dilution (\(V_{{\varphi ,{\text{SDS}}}}^{^\circ }\)) in solutions containing the amino acid (at a fixed concentration of 0.01 mol kg–1) are determined. A rise in the first critical micelle concentration from m = 0.0080 for SDS solutions in water to m = 0.0099 for SDS solutions with Trp is observed. Values of derivatives (\(\partial V_{{\varphi ,{\text{SDS}}}}^{^\circ }\)/∂T)p and (\({{\partial }^{2}}V_{{\varphi ,{\text{SDS}}}}^{^\circ }\)/∂T  2)p, and the partial molar volumes of SDS transfer from water to amino acid aqueous solutions, are calculated. Results are discussed by considering different types of intermolecular interaction in the given solutions. Quantum-chemical DFT/B97D modeling of the complexes between SDS and L-tryptophan zwitterion is done using a combination of basis set 6-311++G(2d,2p) and Grimme’s functional hybrid exchange correlation with a dispersion correction. The polarizable continuum model (PCM) is used to determine the structure and energies of formation of the SDS…Trp complexes with allowance for hydration effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Antimicrobial Peptides: Methods and Protocols, Ed. by A. Giuliani and A. C. Rinaldi (Humana, New York, 2010).

    Google Scholar 

  2. M. R. Bozorgmehr, M. Saberi, and H. Chegini, J. Mol. Liq. 199, 184 (2014).

    Article  CAS  Google Scholar 

  3. Y. Ding, Y. Shu, L. Ge, and R. Guo, Colloids Surf., A 298, 163 (2007).

    Article  CAS  Google Scholar 

  4. Z. Liu, X. Guo, Z. Feng, and L. Jia, J. Solution Chem. 44, 293 (2015).

    Article  CAS  Google Scholar 

  5. H. D. Thaker, F. Sgolastra, D. Clements, R. W. Scott, and G. N. Tew, J. Med. Chem. 54, 2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. I. M. Yermak and V. N. Davydova, Biochemistry (Moscow) Suppl. Ser. A: Membr. Cell Biol. 2, 279 (2008).

    Google Scholar 

  7. E. G. Sumina, S. N. Shtykov, and N. V. Tyurina, J. Anal. Chem. 58, 720 (2003).

    Article  CAS  Google Scholar 

  8. J. L. Brash and T. A. Horbett, Proteins at Interfaces II: Fundamentals and Applications (Am. Chem. Soc., Washington DC, 1995).

    Google Scholar 

  9. E. G. Sumina, in Nanoanalytics, Nanoobjects, and Nanotechnologies in Analytical Chemistry, Ed. by S. Shtykov (De Gruyter, Berlin, 2018), p. 411.

    Google Scholar 

  10. M. G. Khaledi and A. H. Rodgers, Anal. Chim. Acta 239, 121 (1990).

    Article  CAS  Google Scholar 

  11. R. Badarayani and A. Kumar, J. Chem. Thermodyn. 36, 49 (2004).

    Article  CAS  Google Scholar 

  12. O. S. Chernysheva and Ya. A. Maslova, Colloid. J. 78, 407 (2016).

    Article  CAS  Google Scholar 

  13. E. G. Sumina, O. N. Sorokina, V. Z. Uglanova, and T. E. Sorokina, Ital. Sci. Rev. 26 (5), 101 (2015).

    Google Scholar 

  14. S. K. Singh, A. Kundu, and N. Kishore, J. Chem. Thermodyn. 36, 7 (2004).

    Article  CAS  Google Scholar 

  15. S. Chauhan, M. S. Chauhan, P. Sharma, D. S. Rana, and A. Umar, Fluid Phase Equilib. 337, 39 (2013).

    Article  CAS  Google Scholar 

  16. Z. Yan, X. Sun, W.-W. Li, Y. Li, and J. Wang, J. Chem. Thermodyn. 13, 1468 (2011).

    Article  CAS  Google Scholar 

  17. A. Ali, N. A. Malik, S. Uzair, and M. Ali, Mol. Phys. 112, 2681 (2014).

    Article  CAS  Google Scholar 

  18. M. S. Hossain, T. K. Biswas, D. Ch. Kabiraz, Md. N. Islam, and M. E. Huque, J. Chem. Thermodyn. 71, 6 (2014).

    Article  CAS  Google Scholar 

  19. M. Bello, G. Gutierres, and E. Garcia-Hernandez, Biophys. Chem. 165–166, 79 (2012).

    Article  PubMed  CAS  Google Scholar 

  20. P. Talele and N. Kishore, J. Chem. Thermodyn. 70, 182 (2014).

    Article  CAS  Google Scholar 

  21. V. G. Zavodinskii, A. A. Gnidenko, and V. N. Davydova, Butler. Soobshch., No. 2, 11 (2003).

  22. D. E. Nolde, P. E. Volynskii, A. S. Arsen’ev, and R. G. Efremov, Russ. J. Bioorg. Chem. 26, 115 (2000).

    Article  CAS  Google Scholar 

  23. A. S. Khamidullina, I. V. Vakulin, R. F. Talipov, and I. S. Shepelevich, J. Struct. Chem. 46, 985 (2005).

    Article  CAS  Google Scholar 

  24. Z. Qiu, Y. Xia, H. Wang, and K. Diao, J. Struct. Chem. 52, 462 (2011).

    Article  CAS  Google Scholar 

  25. E. N. Brodskaya, Colloid. J. 74, 154 (2012).

    Article  CAS  Google Scholar 

  26. V. G. Badelin, E. Yu. Tyunina, and G. N. Tarasova, Zh. Fiz. Khim. 91, 862 (2017).

    Google Scholar 

  27. N. I. Giricheva, M. S. Kurbatova, E. Yu. Tyunina, and V. G. Badelin, J. Struct. Chem. 58, 1604 (2017).

    Article  CAS  Google Scholar 

  28. A. D. Zimon, A. M. Evtushenko, and I. G. Krasheninnikova, Physical and Colloid Chemistry, Practical Guide (MGUTU, Moscow, 2004) [in Russian].

    Google Scholar 

  29. X. Tang, P. H. Koenig, and R. G. Larson, J. Phys. Chem. B 118, 3864 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Yu. A. Ershov, Colloid Chemistry. Physical Chemistry of Dispersed Systems (GEOTAR-Media, Moscow, 2013) [in Russian].

    Google Scholar 

  31. K. Holmberg, B. Jonsson, B. Kronberg, and B. Lindman, Surfactants and Polymers in Aqueous Solution (Wiley, Chichester, UK, 1998).

    Google Scholar 

  32. H. Nagai, K. Kuwabara, and G. Carta, J. Chem. Eng. Data 53, 619 (2008).

    Article  CAS  Google Scholar 

  33. Chemistry and Biochemistry of the Amino Acids, Ed. by G. C. Barrett (Chapman and Hall, London, New York, 1985).

    Google Scholar 

  34. V. P. Vasil’ev, V. A. Borodin, and E. V. Kozlovskii, Computers in Chemicoanalytical Calculations (Vysshaya Shkola, Moscow, 1993) [in Russian].

    Google Scholar 

  35. G. S. Kell, J. Chem. Eng. Data 20, 97 (1975).

    Article  CAS  Google Scholar 

  36. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971).

    Article  CAS  Google Scholar 

  37. M. J. Frisch, G. W. Truck, H. B. Schlegel, et al., Gaussian 09, Rev. D.01 (Gaussian Inc., Wallingford CT, 2013).

    Google Scholar 

  38. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions (Reinhold, New York, 1950).

    Google Scholar 

  40. F. J. Millero, Chem. Rev. 71, 147 (1971).

    Article  CAS  Google Scholar 

  41. H. Zhao, Biophys. Chem. 122, 157 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. E. Forgács, Fresenius J. Anal. Chem. 349, 743 (1994).

    Article  Google Scholar 

  43. Theoretical and Experimental Methods of Chemistry of Solutions (Problems of Chemistry of Solutions), Ed. by A. Yu. Tsivadze (Prospekt, Moscow, 2011) [in Russian].

    Google Scholar 

  44. D. O. Masson, Philos. Mag. 8, 218 (1929).

    Article  CAS  Google Scholar 

  45. L. Lepori and P. Gianni, J. Solution Chem. 29, 405 (2000).

    Article  CAS  Google Scholar 

  46. F. Franks, Water: A Comprehensive Treatise (Plenum, New York, 1973), Vol. 3.

    Google Scholar 

  47. R. W. Gurney, Ionic Processes in Solution (McGraw-Hill, New York, 1953).

    Google Scholar 

  48. S. K. Singh, A. Kundu, and N. Kishore, J. Chem. Thermodyn. 36, 7 (2004).

    Article  CAS  Google Scholar 

  49. Z. Yan, Q. Zhang, W.-W. Li, and J. Wang, J. Chem. Eng. Data 55, 3560 (2010).

    Article  CAS  Google Scholar 

  50. N. G. Harutyunyan, L. R. Harutyunyan, and R. S. Harutyunyan, Thermochim. Acta 498, 124 (2010).

    Article  CAS  Google Scholar 

  51. L. G. Hepler, Can. J. Chem. 47, 4613 (1969).

    Article  CAS  Google Scholar 

  52. N. V. Usol’tseva, A. I. Smirnova, N. V. Zharnikova, et al., Zhidk. Krist. Prakt. Ispol’z. 16, 70 (2016).

    Google Scholar 

  53. The Cambridge Crystallographic Data Centre, Leibniz Institute for Information Infrastructure. www.ccdc.cam.ac.uk/structures/searchıd=doi:https://doi.org/10.5517/cc123lsk&sid=DataCite.

  54. V. G. Badelin, E. Yu. Tyunina, I. N. Mezhevoi, and G. N. Tarasova, Russ. J. Phys. Chem. A 89, 2229 (2015).

    Article  CAS  Google Scholar 

  55. V. V. Dunaeva, G. V. Girichev, and N. I. Giricheva, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 63 (3), 37 (2020).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Our densimetry studies were performed on equipment at the shared resource center of the Krestov Institute of Solution Chemistry, Upper Volga Region Center of Physicochemical Research (http://www.isc-ras.ru/ru/struktura/ckp).

Funding

The work was supported by the Russian Foundation for Basic Research, grant no. 18-03-01032.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Yu. Tyunina or N. I. Giricheva.

Additional information

Translated by Z. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurbatova, M.S., Tarasova, G.N., Tyunina, E.Y. et al. Investigation of Interactions between Sodium Dodecyl Sulfate and L-Tryptophan Through Densimetry and Computer Modeling. Russ. J. Phys. Chem. 95, 1606–1613 (2021). https://doi.org/10.1134/S0036024421080161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421080161

Keywords:

Navigation