Skip to main content
Log in

Structure of Ternary Nitrate Molten Salt (Hitec) by X-ray Scattering and Density Functional Theory

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Structure of ternary nitrate molten salt (Hitec, 53% KNO3–7% NaNO3–40% NaNO2) at different temperatures were studied with X-ray scattering and density functional theory (DFT). The theoretical partial radial distribution functions were given by model design and theoretical calculations. Na+ forms hexa-coordinate octahedron local structure with the Na–O distances in the range of 2.44–2.46 Å. The K–O distances are in the range of 2.78–2.74 Å. Model fitting and DFT calculations show that Na+/K+ contact with \({\text{NO}}_{2}^{ - }\)/\({\text{NO}}_{3}^{ - }\) form monodentate ligand or bidentate ligand. With the temperature increasing, for Na+, the proportion of monodentate ligand decreased from 78.4 to 73.9%, and the proportion of bidentate ligand increased from 21.6 to 26.1%. For K+, the ratio of monodentate ligand decreased from 65.6 to 61.4%, and the ratio of bidentate ligand increased from 34.4 to 38.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. I. Olivares, Solar Energy 86, 2576 (2012).

    Article  CAS  Google Scholar 

  2. J. H. Cheng, X. H. An, and P. Zhang, Nucl. Tech. 37, 53 (2014).

    Google Scholar 

  3. M. L. Zhang, Y. D. Yan, and Z. Y. Hou, J. Alloys Compd. 440, 362 (2007).

    Article  CAS  Google Scholar 

  4. I. Lee, W. Kim, and Y. Moon, J. Power Sources 101, 90 (2001).

    Article  CAS  Google Scholar 

  5. C. Terryn, M. Sellami, and C. Fichel, Cytometry A 83, 235 (2013).

    Article  Google Scholar 

  6. R. W. Bradshaw, J. G. Cordaro, and N. P. Siegel, in Proceedings of the ASME 2009 3rd International Conference on Energy Sustainability Collocated with the Heat Transfer and Inter PACK09 Conferences (San Francisco, CA, USA, 2009).

  7. Y. Jin, Solar Energy 137, 385 (2016).

    Article  CAS  Google Scholar 

  8. M. D. Silverman and J. R. Engel, Survey of Technology for Storage of Thermal Energy in Heat Transfer Salt (Oak Ridge National Laboratory, USA, 1977).

    Book  Google Scholar 

  9. W. Zhai, B. Yang, and M. Li, Modify Hitec Molten Salt and Its Properties Tests by Orthogonal Experiment (IWM- ECS, Jinan China, 2015).

    Book  Google Scholar 

  10. C. Y. Zhao and Z. G. Wu, Sol. Energy Mater. Sol. Cells 95, 3341 (2011).

    Article  CAS  Google Scholar 

  11. C. C. Lai, Nanoscale 6, 4555 (2014).

    Article  CAS  Google Scholar 

  12. E. González-Roubaud, Renewable Sustainable Energy Rev. 80, 133 (2017).

    Article  Google Scholar 

  13. G. Hatem, K. M. Eriksen, and R. Fehrmann, J. Therm. Anal. Calorim. 68, 25 (2002).

    Article  CAS  Google Scholar 

  14. G. D. Smith, W. Paul, and M. Monkenbusch, J. Chem. Phys. 261, 61 (2000).

    CAS  Google Scholar 

  15. K. P. F. Siqueira, J. C. Soares, and E. Granado, J. Solid State Chem. 209, 63 (2014).

    Article  CAS  Google Scholar 

  16. E. Bodo and P. Postorino, J. Phys. Chem. B 115, 13149 (2011).

    Article  CAS  Google Scholar 

  17. E. Bodo and S. Mangialardo, J. Phys. Chem. B 116, 13878 (2012).

    Article  CAS  Google Scholar 

  18. J. B. Liu, X. Chen, and Y. H. Qiu, J. Phys. Chem. B 118, 13954 (2014).

    Article  CAS  Google Scholar 

  19. X. J. Lv, Z. M. Xu, and J. Li, J. Fluorine Chem. 185, 42 (2016).

    Article  CAS  Google Scholar 

  20. V. Lacassagne, C. Bessada, and P. Florian, J. Phys. Chem. B 106, 1862 (2002).

    Article  CAS  Google Scholar 

  21. H. Ohtaki and T. Radnai, Chem. Rev. 93, 1157 (1993).

    Article  CAS  Google Scholar 

  22. C. H. Fang, Y. Toshio, W. Hisanobu, and O. Hitoshi, Chin. Sci. Bull. 41, 1353 (1996).

    CAS  Google Scholar 

  23. K. Furukawa, Discuss Faraday Soc. 32, 53 (1961).

    Article  Google Scholar 

  24. M. C. Wilding and M. Wilson, Phys. Chem. Chem. Phys. 19, 21625 (2017).

    Article  CAS  Google Scholar 

  25. Z. X. Yu, PhD Thesis (Univ. North-Eastern, Shenyang, 2014).

  26. Y. Q. Zhou, C. H. Fang, and Y. Fang, Russ. J. Phys. Chem. A 86, 1236 (2012).

    Article  Google Scholar 

  27. Y. Zhou, S. Higa, and C. Fang, Phys. Chem. Chem. Phys. 19, 27878 (2017).

    Article  CAS  Google Scholar 

  28. E. Frince, International Tables for Crystallography (Kluwer Academic, London, 2004).

    Google Scholar 

  29. Y. Q. Zhou and K Yoshida, J. Mol Liq. 274, 173 (2019).

    Article  CAS  Google Scholar 

  30. J. D. Chai and M. H. Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).

    Article  CAS  Google Scholar 

  31. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54, 724 (1971).

    Article  CAS  Google Scholar 

  32. M. J. T. Frisch, H. B. Schlegel, G. E. Scuseria, et al., Gaussian 16, Rev. B.01 (Gaussian Inc., Wallingford, CT, 2016).

    Google Scholar 

  33. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

    Article  CAS  Google Scholar 

  34. Y. Zhou, Y. Fang, and C. Fang, J. Phys. Chem. B 117, 11709 (2013).

    Article  CAS  Google Scholar 

  35. L. J. Copeland, and L. Seibles, J. Phys. Chem. 72, 603 (1968).

    Article  CAS  Google Scholar 

  36. M. I. Kay, Ferroelectrics 4, 235 (1972).

    Article  Google Scholar 

  37. G. Gonschorek, H. Weitzel, and G. Miehe, Z. Kristallogr. 215, 752 (2000).

    CAS  Google Scholar 

  38. J. K. Nimmo and B. W. Lucas, Acta Crystallogr. 32, 1968 (1976).

    Article  Google Scholar 

  39. T. J. Ahrens, Mineral Physics and Crystallography: A Handbook of Physical Constantan (Am. Geophys. Union, 1995).

    Book  Google Scholar 

  40. Y. Zhou, S. Xu, F. Fang, C. Fang, and F. Zhu, J. Clust. Sci. 27, 1131 (2016).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the NSFC (no. 201973106), the West Light Foundation of CAS (Y910041014), and the Natural Science Fund of Qinghai Province (2019-ZJ-7001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiying Zhao or Yongquan Zhou.

Ethics declarations

There was no potential conflict of interest reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhou, Y., Wang, G. et al. Structure of Ternary Nitrate Molten Salt (Hitec) by X-ray Scattering and Density Functional Theory. Russ. J. Phys. Chem. 95, 1185–1193 (2021). https://doi.org/10.1134/S0036024421060327

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421060327

Keywords:

Navigation