Skip to main content
Log in

Studying the Sorption of Uranyl Ions from Aqueous Solutions with the Structured 4-Isopropenylphenol–Phenol–Formaldehyde Copolymer

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The extraction of uranium salts from aqueous systems was studied under steady-state conditions (at 25°C with the use of a sorbent material based on the 4-isopropenylphenol–phenol–maleic anhydride cooligomer). The effect of different factors (pH of the medium, concentration of uranyl ions (at 25°С), copolymer amount, and exposure time) on the principal sorption process parameters (degree of extraction of uranyl ions and sorption capacity) was revealed. At pH 5–6, the degree of extraction of uranyl ions was established to attain a maximum (~94%) at a sorption capacity of ~80 mg/g. At the optimal values of pH (5–6), the dependence of the steady-state sorption capacity on the initial concentration С0 of uranyl ions was investigated. The steady-state region was observed at a concentration of >200 mg/L and, in this case, the sorption capacity was 101 mg/g. The Freundlich and Langmuir isotherms were plotted, and some hypotheses about possible interactions between uranyl ions and active copolymer moieties were made. The possibility of regenerating the sorbent in the presence of acids and alkalies was also investigated. Maximum desorption of ~96.2% was revealed in the presence of mineral acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. K. Modi, P. Pattanaik, N. Dash, et al., Int. J. Pharm. Sci. Rev. Res 34, 122 (2015).

    CAS  Google Scholar 

  2. K. G. Akpomie, F. A. Dawodu, and K. O. Adebowale, Alexandria Eng. J. 54, 757 (2015). https://doi.org/10.1016/j.aej.2015.03.025

    Article  Google Scholar 

  3. Z. Yu. Bunina, E. Yu. Bryleva, O. I. Yurchenko, and K. N. Belikov, Khim. Fiz. Tekhnol. Poverkhn. 9 (1), 80 (2018).

    CAS  Google Scholar 

  4. I. V. Polyakova, A. R. Groshikova, A. P. Leshchinskaya, et al., Sorbtsion. Khromatogr. Protsessy 8, 694 (2008).

    Google Scholar 

  5. A. S. Shilina and V. K. Milinchuk, Sorbtsion. Khromatogr. Protsessy 10, 237 (2010).

    Google Scholar 

  6. J. Qian, S. Cai, S. Yang, and D. Hua, J. Mater. Chem. A 5, 22380 (2017). https://doi.org/10.1039/C7TA08025E

    Article  CAS  Google Scholar 

  7. A. M. James, S. Harding, Th. Robshaw, et al., ACS Appl. Mater. Interfaces 11, 22464 (2019). https://doi.org/10.1021/acsami.9b06295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. N. B. Ferapontov, A. N. Gagarin, and M. G. Tokmachev, Sorbtsion. Khromatogr. Protsessy 16, 368 (2016).

    CAS  Google Scholar 

  9. L. Zemskova, A. Egorin, E. Tokar, and V. Ivanov, Biomimetics 3, 39 (2018). https://doi.org/10.3390/biomimetics3040039

  10. E. Zakharchenko, O. Mokhodoeva, D. Malikov, et al., Proc. Chem. 7, 268 (2012). https://doi.org/10.1016/j.proche.2012.10.043

    Article  CAS  Google Scholar 

  11. A. M. Magerramov and M. R. Bairamov, Alkenylphenol Chemistry (Tekhnosfera, Moscow, 2018) [in Russian].

    Google Scholar 

  12. A. M. Maharramov, M. R. Bayramov, M. A. Agayeva, G. M. Mehdiyeva, and I. G. Mamedov, Russ. Chem. Rev. 84, 1258 (2015).

    Article  CAS  Google Scholar 

  13. A. M. Magerramov, M. R. Bairamov, A. A. Garibov, Dzh. A. Nagiev, M. G. Allakhverdieva, M. A. Agaeva, and G. M. Bairamova, Russ. J. Appl. Chem. 84, 151 (2011).

    Article  CAS  Google Scholar 

  14. G. F. Knoll, Radiation Detection and Measurements, 3rd ed. (Ann Arboar, Michigan, 1999), p. 806.

    Google Scholar 

  15. A. Froideval, Thesis (Univ. Louis Pasteur, Strasbourg, France, 2004).

  16. Y. S. Ho, J. F. Porter, and G. McKay, Water, Air, Soil Pollut. 141, 1 (2002).

    Article  CAS  Google Scholar 

  17. J. C. Y. Ng, W. H. Cheung, and G. McKay, Chemosphere 52, 1021 (2003). https://doi.org/10.1016/S0045-6535(03)00223-6

    Article  CAS  PubMed  Google Scholar 

  18. A. Nakajima and T. Sakaguchi, J. Chem. Technol. Biotechnol. 36, 281 (1986). https://doi.org/10.1002/jctb.280400205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Mehdiyeva.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdiyeva, G.M., Bairamov, M.R., Nagiev, D.A. et al. Studying the Sorption of Uranyl Ions from Aqueous Solutions with the Structured 4-Isopropenylphenol–Phenol–Formaldehyde Copolymer. Russ. J. Phys. Chem. 95, 769–774 (2021). https://doi.org/10.1134/S0036024421040178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421040178

Keywords:

Navigation