Skip to main content
Log in

Evaluation of Electrochemical Stability of Substituted Sulfolanes Based on Bond Orders

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

To assess the effect of substituents on the bond strength in the substituted sulfolanes and their electrochemical stability, a quantum-chemical study of 35 structures has been performed. The studied substances are sulfolane, 4 mono- and 10 difluoro-substituted structures, methyl, ethyl, propyl, vinyl, and allyl-substituted structures. The bond orders for these structures were calculated by three methods, namely Weiberg’s method, Meyer’s method, and a method for determining bond orders for “fuzzy” atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Chen, K. Wen, J. Fan, et al., J. Mater. Chem. A 6, 11631 (2018). https://doi.org/10.1039/C8TA03358G

    Article  CAS  Google Scholar 

  2. Zhi-Fang Zhou, Xiao-Ling Cui, Hong-Ming Zhang, Cong-Cong Yang, and Fan-Jie Xu, Russ. J. Electrochem. 53, 352 (2017). https://doi.org/10.7868/S0424857017040144

    Article  CAS  Google Scholar 

  3. N. Shao, X.-G. Sun, S. Dai, et al., J. Phys. Chem. B 115, 12120 (2011). https://doi.org/10.1021/jp204401t

    Article  CAS  PubMed  Google Scholar 

  4. F. Wu, H. Zhou, Y. Bai, et al., ACS Appl. Mater. Interfaces 7, 15098 (2015). https://doi.org/10.1021/acsami.5b04477

    Article  CAS  PubMed  Google Scholar 

  5. V. S. Kolosnitsyn, L. V. Sheina, and S. E. Mochalov, Russ. J. Electrochem. 44, 575 (2008). https://doi.org/10.1134/S102319350805011X

    Article  CAS  Google Scholar 

  6. L. V. Sheina, E. V. Kuz’mina, and E. V. Karaseva, Russ. J. Appl. Chem. 91, 1427 (2018).https://doi.org/10.1134/S1070427218090045

    Article  CAS  Google Scholar 

  7. Y.-H. An, D. K. Yang, C.-H. Lee, et al., European Patent No. EP2755272 (2012).

  8. N. Shao, X.-G. Sun, S. Dai, et al., J. Phys. Chem. B 116, 3235 (2012). https://doi.org/10.1021/jp211619

    Article  CAS  PubMed  Google Scholar 

  9. O. Borodin, M. Olguin, C. E. Spear, et al., Nanotechnology 26, 354003 (2015). https://doi.org/10.1088/0957-4484/26/35/354003

    Article  CAS  PubMed  Google Scholar 

  10. O. Borodin, X. Ren, and J. Vatamanu, Acc. Chem. Res. 50, 2886 (2017). https://doi.org/10.1021/acs.accounts.7b00486

    Article  CAS  PubMed  Google Scholar 

  11. T. Lu and F. Chen, J. Phys. Chem. A 117, 3100 (2013). https://doi.org/10.1021/jp4010345

    Article  CAS  PubMed  Google Scholar 

  12. H. O. Jenkins, J. Am. Chem. Soc. 77, 3168 (1955). https://doi.org/10.1021/ja01616a097

    Article  CAS  Google Scholar 

  13. K. B. Wiberg, Tetrahedron 24, 1083 (1968). https://doi.org/10.1016/0040-4020(68)88057-3

    Article  CAS  Google Scholar 

  14. I. Mayer and P. Salvador, Chem. Phys. Lett. 383, 368 (2004). https://doi.org/10.1016/j.cplett.2003.11.048

    Article  CAS  Google Scholar 

  15. I. Mayer, Chem. Phys. Lett. 97, 270 (1983). https://doi.org/10.1016/0009-2614(83)80005-0

    Article  CAS  Google Scholar 

  16. T. Lu and F. Chen, J. Comp. Chem. 33, 580 (2012). https://doi.org/10.1002/jcc.22885

    Article  CAS  Google Scholar 

  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Revision C.01 (Gaussian, Inc., Wallingford CT, 2010).

    Google Scholar 

  18. J. Tao, J. P. Perdew, and V. N. Staroverov, Phys. Rev. Lett. 91, 146401 (2003). https://doi.org/10.1103/PhysRevLett.91.146401

    Article  CAS  PubMed  Google Scholar 

  19. D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993). https://doi.org/10.1063/1.464303

    Article  CAS  Google Scholar 

  20. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Andrei Sergeevich Yas’ko is gratefully acknowledged for his help with calculations.

Funding

This work was performed as part of a State Task for Ufa Institute of Chemistry of the Russian Academy of Sciences (project no. АААА-А17-117011910031-7, V.S. Kolosnitsyn). It was financially supported by the Russian Science Foundation (project no. 17-73-20115, E.M. Khamitov, E.V. Kuz’mina, E.V. Karaseva).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Khamitov.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamitov, E.M., Kuz’mina, E.V., Karaseva, E.V. et al. Evaluation of Electrochemical Stability of Substituted Sulfolanes Based on Bond Orders. Russ. J. Phys. Chem. 95, 730–735 (2021). https://doi.org/10.1134/S0036024421040129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421040129

Keywords:

Navigation