Skip to main content
Log in

Diffusion Measurements of Hydrocarbons in Zeolites with Pulse-Field Gradient Nuclear Magnetic Resonance Spectroscopy

  • IN COMMEMORATION OF ACADEMICIAN V.V. LUNIN: SELECTED CONTRIBUTIONS FROM HIS STUDENTS AND COLLEAGUES
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Pulse field gradient NMR technique was used to determine self-diffusivity of heptane and pentadecane at room temperature for microporous catalysts, used both as powders and shaped with a binder extrudates. The results showed that diffusivities increased with increasing specific surface area, micro- and mesopore volume of the studied catalysts. The presence of Bindzil binder together with H-Beta-25 decreased hydrocarbon diffusivities. Self-diffusivities of heptane and pentadecane were smaller for extrudates than for the powder catalysts. The detailed information about mass transfer limitations is needed to further process optimization since effective diffusivity is directly correlated with self-diffusion coefficients. The estimates of the ratio of porosity and tortuosity were also determined. The diffusion measurements with relatively long observation times Δ (20 up to 1000 ms) and catalysts fully immersed in pentadecane revealed that a small portion of sites exhibits very small diffusivities in H-Beta-25-Bindzil extrudates, which is correlated with a low ratio of mesopore to micropore volumes of this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. M. Azkaar, Z. Vajglová, P. Mäki-Arvela, et al., Fuel 278, 118193 (2020).

    Article  CAS  Google Scholar 

  2. T. Kaka khel, P. Mäki-Arvela, M. Azkaar, et al., Mol. Catal. 476, 110515 (2019).

  3. P. Mäki-Arvela, T. A. Kaka Khel, M. Azkaar, et al., Catalysts 8, 534 (2018).

    Article  Google Scholar 

  4. M. O. Kazakov, K. A. Nadeina, I. G. Danilova, et al., Catal. Today 329, 108 (2019).

    Article  CAS  Google Scholar 

  5. M. Azkaar, P. Mäki-Arvela, Z. Vajglová, et al., React. Chem. Eng. 4, 2156 (2019).

    Article  CAS  Google Scholar 

  6. Z. Vajglová, N. Kumar, P. Mäki-Arvela, et al., Org. Proc. Res. Dev. 23, 2456 (2019).

    Article  Google Scholar 

  7. Z. Vajglová, N. Kumar, P. Mäki-Arvela, et al., Ind. Eng. Chem. Res. 58, 18084 (2019).

    Article  Google Scholar 

  8. Z. Vajglová, N. Kumar, M. Peurla, et al., Catal. Sci. Technol. 8, 6150 (2018).

    Article  Google Scholar 

  9. R. Bingre, B. Vincent, Q. Wang, et al., J. Phys. Chem. C 123, 637 (201).

  10. Z. Adem, F. Guenneau, M. A. Springuel-Huet, et al., J. Phys. Chem. C 116, 13749 (2012).

    Article  CAS  Google Scholar 

  11. H. Jobic, W. Schmidt, C. B. Krause, and J. Kärger, Microporous Mesoporous Mater. 90, 299 (2006).

    Article  CAS  Google Scholar 

  12. S. Vasenkov, W. Bohlmann, P. Galvosas, et al., J. Phys. Chem. B 105, 5922 (2001).

    Article  CAS  Google Scholar 

  13. N. Dvoyashkina, D. Freude, A. G. Stepanov, et al., Microporous Mesoporous Mater. 257, 128 (2018).

    Article  CAS  Google Scholar 

  14. W. Heink, J. Kärger, H. Pfeifer, et al., J. Chem. Soc. Faraday Trans. 88, 3505 (1992).

    Article  CAS  Google Scholar 

  15. J. Kärger, D. M. Ruthven, and D. N. Theodorou, Diffusion in Nanoporous Materials (Wiley-VCH, Weinheim, Germany, 2012).

    Book  Google Scholar 

  16. S. K. Saxena, N. Viswanadham, and M. O. Garg, Fuel 107, 432 (2013).

    Article  CAS  Google Scholar 

  17. G. Giannetto, G. Perot, and M. Guisnet, Stud. Surf. Sci. Catal. 20, 265 (1985).

    Article  CAS  Google Scholar 

  18. J. F. Kriz, T. D. Pope, M. Stanciulescu, and J. Monnier, Ind. Eng. Chem. Res. 37, 4560 (1998).

    Article  CAS  Google Scholar 

  19. Z. Vajglová, N. Kumar, M. Peutia, et al., Ind. Eng. Chem. Res. 58, 10875 (2019).

    Article  Google Scholar 

  20. C. A. Emeis, J. Catal. 141, 347 (1993).

    Article  CAS  Google Scholar 

  21. R. M. Cotts, M. J. R. Hoch, T. Sun, and J. T. Markert, J. Magn. Reson. 83, 252 (1989).

    CAS  Google Scholar 

  22. W. S. Price, NMR Studies of Translational Motion (Cambridge Univ. Press, Cambridge, New York, 2009).

    Book  Google Scholar 

  23. P. T. Callaghan, Translational Dynamics and Magnetic Resonance: Principles of Pulsed Gradient Spin Echo NMR (Oxford Univ. Press, Oxford, New York, 2011).

    Book  Google Scholar 

  24. V.-V. Telkki and V. V. Zhivonitko, in Annual Reports on NMR Spectroscopy (Academic, New York, 2019), p. 83.

    Google Scholar 

  25. P. Liu, Y. Yao, X. Zhang, and J. Wang, Chin. J. Chem. Eng. 19, 278 (2011).

    Article  CAS  Google Scholar 

  26. S. Hwang and J. Kärger, Adsorption (2020, in press). https://doi.org/10.1007/s10450-020-00237-0

  27. H. H. Funke, A. M. Argo, C. D. Baertsch, J. L. Falconer, and R. D. Noble, J. Chem. Soc. Faraday Trans. 92, 2499 (1996).

    Article  Google Scholar 

  28. H. Zhao, J. Ma, Q. Zhang, et al., Ind. Eng. Chem. Res. 53, 13810 (2014).

    Article  CAS  Google Scholar 

  29. D. Xu, J. Ma, H. Zhao, et al., Fluid Phase Equilib. 423, 8 (2016).

    Article  CAS  Google Scholar 

  30. W.-D. Einicke, D. Enke, M. Dvoyashkin, et al., Materials (Basel) 6, 3688 (2013).

    Article  CAS  Google Scholar 

  31. D. Yu. Murzin and T. Salmi, Catalytic Kinetics (Elsevier, New York, 2005).

    Google Scholar 

  32. P. P. Mitra, P. N. Sen, L. M. Schwartz, and P. le Doussal, Phys. Rev. Lett. 68, 3555 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Murzin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhivonitko, V.V., Vajglová, Z., Mäki-Arvela, P. et al. Diffusion Measurements of Hydrocarbons in Zeolites with Pulse-Field Gradient Nuclear Magnetic Resonance Spectroscopy. Russ. J. Phys. Chem. 95, 547–557 (2021). https://doi.org/10.1134/S0036024421030250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421030250

Keywords:

Navigation