Skip to main content
Log in

Self-Diffusion of Fullerene С60 Derivatives in Aqueous Solutions and Suspensions of Erythrocytes According to Pulsed Field Gradient NMR Data

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Determination of the mechanism of substance penetration in biological cells is one of the fundamental problems of metabolism. Interest in the water-soluble derivatives of fullerene C60 is dictated by their high biological activity (targeted drug delivery, antiviral and antibacterial activity, etc.). Erythrocytes were chosen as a model target. The parameters of molecular diffusion of the water-soluble derivatives of fullerene C60 (pentasubstituted derivative with attached mercaptopropionic acid residues and pentasubstituted derivative with attached proline residues) in aqueous solutions and erythrocyte suspension were obtained. In erythrocyte suspension, the fullerene C60 derivatives exist in the form of isolated and associated molecules in the aqueous phase or are bound to the cell membrane. The relative parts and lifetimes of the molecules of water-soluble fullerene derivatives in erythrocytes were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. F. Baker and H. J. Rogers, Biochem. Pharmacol. 21, 1871 (1972).

    Article  CAS  Google Scholar 

  2. D. Sun, H. Lennernas, L. S. Welage, et al., Pharm. Res. 19, 1400 (2002).

    Article  CAS  Google Scholar 

  3. R. B. van Breemen and Y. Li, Expert Opin. Drug Metab. Toxicol. 1, 175 (2005).

    Article  CAS  Google Scholar 

  4. S. J. Jung, S. O. Choia, S. Y. Um, et al., J. Pharm. Biomed. Anal. 41, 469 (2006).

    Article  CAS  Google Scholar 

  5. H. Tsuchiya, T. Ueno, M. Mizogami, and K. Takakura, Chem. Biol. Interact. 183, 19 (2010).

    Article  CAS  Google Scholar 

  6. L. Liu, T. Lei, L. Bankir, et al., J. Comp. Physiol. B 181, 65 (2011).

    Article  CAS  Google Scholar 

  7. G. Benga, Eur. Biophys. J. 42, 33 (2013).

    Article  Google Scholar 

  8. T. D. Ros and M. Prato, Chem. Commun., 663 (1999).

  9. S. Bosi, T. D. Ros, G. Spalluto, et al., Bioorg. Med. Chem. Lett. 13, 4437 (2003).

    Article  CAS  Google Scholar 

  10. T. Mashino, K. Shimotohno, N. Ikegami, et al., Bioorg. Med. Chem. Lett. 15, 1107 (2005).

    Article  CAS  Google Scholar 

  11. A. B. Kornev, A. S. Peregudov, V. M. Martynenko, et al., Chem. Commun. 47, 8298 (2011).

    Article  CAS  Google Scholar 

  12. E. A. Khakina, O. A. Kraevaya, M. L. Popova, et al., Org. Biomol. Chem. 15, 773 (2017).

    Article  CAS  Google Scholar 

  13. S. Bosi, T. Da Ros, S. Castellano, et al., Bioorg. Med. Chem. Lett. 10, 1043 (2000).

    Article  CAS  Google Scholar 

  14. T. Mashino, D. Nishikawa, K. Takanashi, et al., Bioorg. Med. Chem. Lett. 13, 4395 (2003).

    Article  CAS  Google Scholar 

  15. D. G. Deryabin, L. V. Efremova, L. S. Vasilchenko, et al., J. Nanobiotechnol. 13, 1 (2015).

    Article  CAS  Google Scholar 

  16. A. Lin, S. Fang, S. Lin, et al., NeuroSci. Res. 43, 317 (2002).

    Article  CAS  Google Scholar 

  17. F.-Y. Hsieh, A. V. Zhilenkov, I. I. Voronov, E. A. Khakina, D. V. Mischenko, P. A. Troshin, and S.-H. Hsu, ACS Appl. Mater. Interfaces 9, 11482 (2017).

    Article  CAS  Google Scholar 

  18. N. Nakajima, C. Nishi, F.-M. Li, and Y. Ikada, Fuller. Sci. Technol. 4, 1 (1996).

    Article  CAS  Google Scholar 

  19. Y. Tabata, T. Ishii, T. Aoyama, R. Oki, Y. Hirano, O. Ogawa, and Y. Ikada, in Perspectives of Fullerene Nanotechnology, Ed. by E. Osawa (Kluwer Academ., 2001).

    Google Scholar 

  20. A. Gareth, Nanomed.: NBM 1, 22 (2005).

    Article  Google Scholar 

  21. A. A. Yurkova, E. A. Khakina, S. I. Troyanov, A. V. Chernyak, L. V. Shmygleva, A. A. Peregudov, V. M. Martynenko, Y. A. Dobrovolskiy, and P. A. Troshin, Chem. Commun. 48, 8916 (2012).

    Article  CAS  Google Scholar 

  22. N. E. Fedorova, R. R. Klimova, Yu. A. Tulenev, E. V. Chichev, A. B. Kornev, and P. Troshin, Mendeleev Commun. 22, 254 (2012).

    Article  CAS  Google Scholar 

  23. O. L. Kobzar, V. V. Trush, V. Yu. Tanchuk, I. I. Voronov, A. S. Peregudov, P. A. Troshin, and A. I. Vovk, Mendeleev Commun. 25, 199 (2015).

    Article  CAS  Google Scholar 

  24. J. Wong-Ekkabut, S. Baoukina, W. Triampo, I.-Ming Tang, D. P. Tieleman, and L. Monticelli, Nat. Nanotechnol. 3, 363 (2008).

    Article  CAS  Google Scholar 

  25. R. A. Kotelnikova, A. I. Kotelnikov, G. N. Bogdanov, V. S. Romanova, E. F. Kuleshova, and Z. N. Parnes, FEBS Lett. 389, 111 (1996).

    Article  CAS  Google Scholar 

  26. R. A. Kotelnikova, G. N. Bogdanov, E. C. Frog, et al., J. Nanopart. Res. 5, 561 (2003).

    Article  CAS  Google Scholar 

  27. S. Foley, C. Crowley, M. Smaihi, C. Bonfils, B. F. Erlanger, P. Seta, and C. Larroque, Res. Commun. 294, 116 (2002).

    CAS  Google Scholar 

  28. A. Dellinger, Z. Zhou, S. K. Norton, R. Lenk, D. Conrad, and C. L. Kepley, Nanomed.: NBM 6, 575 (2010).

    Article  CAS  Google Scholar 

  29. A. R. Waldeck, P. W. Kuchel, A. J. Lennon, and B. E. Chapman, Progr. Nucl. Magn. Reson. Spectrosc. 30, 39 (1997).

    Article  CAS  Google Scholar 

  30. C.-H. Cho, Y.-S. Hong, K. Kang, V. I. Volkov, V. Skirda, C.-Y. J. Lee, and C.-Ho. Lee, Magn. Reson. Imag. 21, 1009 (2003).

    Article  CAS  Google Scholar 

  31. Ki-J. Suh, Y.-S. Hong, V. D. Skirda, V. I. Volkov, C.‑Y. Lee, and C.-Ho. Lee, Biophys. Chem. 104, 121 (2003).

    Article  Google Scholar 

  32. C. Anselmi, F. Bernardi, M. Centini, E. Gaggelli, N. Gaggelli, D. Valensin, and G. Valensin, Chem. Phys. Lipids 134, 109 (2005).

    Article  CAS  Google Scholar 

  33. I. A. Avilova, S. G. Vasil’ev, L. V. Rimareva, E. M. Serba, L. D. Volkova, and V. I. Volkov, Russ. J. Phys. Chem. A 89, 710 (2015).

    Article  CAS  Google Scholar 

  34. I. A. Avilova, A. V. Smolina, A. I. Kotelnikov, R. A. Kotelnikova, V. V. Loskutov, and V. I. Volkov, Appl. Magn. Reson. 47, 335 (2016).

    Article  CAS  Google Scholar 

  35. I. A. Avilova, E. A. Khakina, O. A. Kraevaya, A. I. Kotelnikov, R. A. Kotelnikova, P. A. Troshin, and V. I. Volkov, Biochim. Biophys. Acta 1860, 1537 (2018).

    Article  CAS  Google Scholar 

  36. C.-W. Wong, A. V. Zhilenkov, O. A. Kraevaya, D. V. Mischenko, P. A. Troshin, and S.-H. Hsu, J. Med. Chem. 15, 7111 (2019).

    Article  Google Scholar 

  37. L. M. Sheiko and S. B. Bokut’, Practical Works on Medical and Biological Physics. Section Biological Physics, Methods of Biophysical Research (MGEU im. A. D. Sakharova, Minsk, 2011) [in Russian].

  38. A. I. Maklakov, V. D. Skirda, and N. F. Fatkullin, Self-Diffusion in Polymer Solutions and Melts (Kazan. Univ., Kazan, 1987) [in Russian].

    Google Scholar 

  39. I. A. Avilova, A. V. Chernyak, A. V. Zhilenkov, P. A. Troshin, and V. I. Volkov, Mendeleev Commun. 26, 146 (2016).

    Article  CAS  Google Scholar 

  40. A. V. Chernyak, I. A. Avilova, E. A. Khakina, A. V. Mumyatov, V. A. Zabrodin, P. A. Troshin, and V. I. Volkov, Appl. Magn. Reson. 47, 859 (2016).

    Article  CAS  Google Scholar 

  41. J. Karger, H. Pheifer, and W. Heink, Adv. Magn. Reson. 12, 1 (1988).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study of the pentasubstituted derivative of fullerene C60 with attached proline residues was financially supported by the Russian Foundation for Basic Research (project no. 18-32-00815). The NMR measurements were performed using the equipment of the Multiaccess Center of the Institute of Problems of Chemical Physics, Russian Academy of Sciences, under the government contract at the Institute of Problems of Chemical Physics, Russian Academy of Sciences (state registration no. 0089-2019-0010/no. AAAA-A19-119071190044-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Volkov.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avilova, I.A., Soldatova, Y.V., Kraevaya, O.A. et al. Self-Diffusion of Fullerene С60 Derivatives in Aqueous Solutions and Suspensions of Erythrocytes According to Pulsed Field Gradient NMR Data. Russ. J. Phys. Chem. 95, 285–291 (2021). https://doi.org/10.1134/S0036024421020047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421020047

Keywords:

Navigation