Hydrodynamic Diameter of Silver Nanoparticles in Solutions of Nonionic Surfactants

Abstract

Physicochemical characteristics of silver nanoparticles with known sizes are studied, depending on the concentration of nonionic surfactants and the concentration of the metal. Surfactants are used that form micelles of different sizes and different intensities of light scattering. It is shown that the surface tension and adhesion properties of solutions of nonionic surfactants are determined by the solvent in ranges of concentration lower than 1 mol/L. An approach based on spectrophotometry and viscosimetry is proposed that allows determination of the most likely reasons for discrepancies in the hydrodynamic diameter of nanoparticles in solutions of nonionic surfactants and the actual diameter of the nanoparticles.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    P. Calvert, Chem. Mater. 13, 3299 (2001).

    CAS  Article  Google Scholar 

  2. 2

    R. A. Hayes and B. J. Feenstra, Nature (London, U.K.) 425, 383 (2003).

    CAS  Article  Google Scholar 

  3. 3

    M. J. Lawrence and G. D. Rees, Adv. Drug Deliv. Rev. 45, 89 (2000).

    CAS  Article  Google Scholar 

  4. 4

    F. Lopez, G. Cinelli, M. Colella, et al., Biotechnol. Prog. 30, 360 (2014).

    CAS  Article  Google Scholar 

  5. 5

    A. Kamyshny, M. Ben-Moshe, S. Aviezer, and S. Magdassi, Macromol. Rapid Commun. 26, 281 (2005).

    CAS  Article  Google Scholar 

  6. 6

    A. Rae and D. Hammer-Fritzinger, Solid State Technol. 49 (4), 53 (2006).

    CAS  Google Scholar 

  7. 7

    I. Capek, Adv. Colloid Interface Sci. 110, 49 (2004).

    CAS  Article  Google Scholar 

  8. 8

    A. Kamyshny and S. Magdassi, Small 10, 3515 (2014).

    CAS  Article  Google Scholar 

  9. 9

    M. A. Lopez-Quintela and J. Rivas, J. Colloid Interface Sci. 158, 446 (1993).

    CAS  Article  Google Scholar 

  10. 10

    G. D. J. Phillies, Anal. Chem. 62, 1049 (1990).

    Article  Google Scholar 

  11. 11

    B. N. Khlebtsov and N. G. Khlebtsov, Colloid. J. 73, 118 (2011).

    CAS  Article  Google Scholar 

  12. 12

    A. I. Bulavchenko, V. V. Tatarchuk, O. A. Bulavchenko, and A. T. Arymbaeva, Russ. J. Inorg. Chem. 50, 786 (2005).

    Google Scholar 

  13. 13

    A. I. Bulavchenko and P. S. Popovetskii, Russ. J. Phys. Chem. A 86, 999 (2012).

    CAS  Article  Google Scholar 

  14. 14

    A. I. Bulavchenko and P. S. Popovetskiy, Langmuir 30, 12729 (2014).

    CAS  Article  Google Scholar 

  15. 15

    A. I. Bulavchenko and D. N. Pletnev, J. Phys. Chem. C 112, 16365 (2008).

    CAS  Article  Google Scholar 

  16. 16

    A. I. Bulavchenko and P. S. Popovetskiy, Langmuir 26, 736 (2010).

    CAS  Article  Google Scholar 

  17. 17

    F. Beunis, F. Strubbe, K. Neyts, and A. R. M. Verschueren, Appl. Phys. Lett. 90, 182103 (2007).

    Article  Google Scholar 

  18. 18

    C. Alvarez-Lorenzo, J. L. Gómez-Amoza, R. Martínez-Pacheco, et al., Int. J. Pharm. 180, 91 (1999).

    CAS  Article  Google Scholar 

  19. 19

    P. Ruenraroengsak and A. T. Florence, Int. J. Pharm. 298, 361 (2005).

    CAS  Article  Google Scholar 

  20. 20

    M. Vassem, G. McKerricher, and A. Shamim, ACS Appl. Mater. Interfaces 8, 177 (2016).

    Article  Google Scholar 

  21. 21

    P. Calvert, Chem. Mater. 13, 3299 (2001).

    CAS  Article  Google Scholar 

  22. 22

    J. L. van der Minne and P. H. J. Hermanie, J. Colloid Sci. 7, 600 (1952).

    CAS  Article  Google Scholar 

  23. 23

    R. W. O’Brien and L. R. White, J. Chem. Soc., Faraday Trans. 2 74, 1607 (1978).

    Article  Google Scholar 

  24. 24

    A. V. Delgado, F. Gonzalez-Caballero, R. J. Hunter, et al., J. Colloid Interface Sci. 309, 194 (2007).

    CAS  Article  Google Scholar 

  25. 25

    M. P. Pileni, J. Phys. Chem. 97, 6961 (1993).

    CAS  Article  Google Scholar 

  26. 26

    A. T. Arymbaeva, N. O. Shaparenko, P. S. Popovetskii, and A. I. Bulavchenko, Russ. J. Inorg. Chem. 62, 1007 (2017).

    CAS  Article  Google Scholar 

  27. 27

    P. S. Popovetskii, N. O. Shaparenko, A. T. Arymbaeva, and A. I. Bulavchenko, Colloid. J. 78, 485 (2016).

    Article  Google Scholar 

  28. 28

    P. S. Popovetskii and A. I. Bulavchenko, Colloid. J. 78, 196 (2016).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-33-00064 mol-a.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. S. Popovetskiy.

Additional information

Translated by O. Polyakov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popovetskiy, P.S., Kolodin, A.N. Hydrodynamic Diameter of Silver Nanoparticles in Solutions of Nonionic Surfactants. Russ. J. Phys. Chem. 94, 2126–2134 (2020). https://doi.org/10.1134/S0036024420100246

Download citation

Keywords:

  • nanoparticles
  • adsorption layer
  • reverse micelles
  • dynamic light scattering
  • surface tension
  • adhesive properties
  • microviscosity