Skip to main content
Log in

Theoretical Study on the Mechanisms and Kinetic Parameters for the Initiation Reaction of Grubbs–Hoveyda Catalyst

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this work, typical alkenes and Grubbs–Hoveyda catalyst (Cat1) were selected to study the mechanism and kinetic parameters (the entropies, enthalpies, free energies, and rate constants) for the initiation reaction of Cat1 through employing the solution translational entropy model (THERMO program) exploited by us. The calculated results are in better agreement with the experimental ones reported by Plenio et al. compared with those obtained by using the default entropy model embedded in Gaussian software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. E. Plata and D. A. Singleton, J. Am. Chem. Soc. 137, 3811 (2015).

    Article  CAS  Google Scholar 

  2. A. Winter, Nat. Chem. 7, 473 (2015).

    Article  CAS  Google Scholar 

  3. R. L. Martin, P. J. Hay, and L. R. Pratt, J. Phys. Chem. A 102, 3565 (1998).

    Article  CAS  Google Scholar 

  4. H. K. Lee, K. T. Bang, A. Hess, R. H. Grubbs, and T. L. Choi, J. Am. Chem. Soc. 137, 9262 (2015).

    Article  CAS  Google Scholar 

  5. S. B. Garber, J. S. Kingsbury, B. L. Gray, and A. H. Hoveyda, J. Am. Chem. Soc. 122, 8168 (2000).

    Article  CAS  Google Scholar 

  6. S. Gessler, S. Randl, and S. Blechert, Tetrahedron Lett. 41, 9973 (2000).

    Article  CAS  Google Scholar 

  7. M. S. Sanford, J. A. Love, and R. H. Grubbs, J. Am. Chem. Soc. 123, 6543 (2001).

    Article  CAS  Google Scholar 

  8. T. Vorfalt, K. J. Wannowius, and H. Plenio, Angew. Chem., Int. Ed. 122, 5665 (2010).

    Article  Google Scholar 

  9. G. C. Vougioukalakis and R. H. Grubbs, Chem. Eur. J. 14, 7545 (2008).

    Article  CAS  Google Scholar 

  10. K. M. Engle, G. Lu, S. X. Luo, L. M. Henling, M. K. Takase, P. Liu, K. N. Houk, and R. H. Grubbs, J. Am. Chem. Soc. 137, 5782 (2015).

    Article  CAS  Google Scholar 

  11. V. Thiel, M. Hendann, K. J. Wannowius, and H. Plenio, J. Am. Chem. Soc. 134, 1104 (2012).

    Article  CAS  Google Scholar 

  12. R. W. Gurney, Introduction to Statistical Mechanics (New York, McGraw-Hill, 1949).

    Google Scholar 

  13. D. H. Wertz, J. Am. Chem. Soc. 102, 5316 (1980).

    Article  CAS  Google Scholar 

  14. E. A. Guggenheim, Trans. Faraday Soc. 37, 97 (1941).

    Article  CAS  Google Scholar 

  15. M. Mammen, E. I. Shakhnovich, J. M. Deutch, and G. M. Whitesides, J. Org. Chem. 63, 3821 (1998).

    Article  CAS  Google Scholar 

  16. H. Fujiwara, I. Ohtaku, T. Takagi, S. Murata, and Y. Sasaki, Bull. Chem. Soc. Jpn. 61, 1853 (1988).

    Article  CAS  Google Scholar 

  17. M. L. Perlman and G. K. Rollefson, J. Chem. Phys. 9, 362 (1941).

    Article  CAS  Google Scholar 

  18. M. H. Abraham, J. Am. Chem. Soc. 103, 6742 (1981).

    Article  CAS  Google Scholar 

  19. D. C. Fang, THERMO (Beijing Normal Univ., Beijing, China, 2013).

  20. L. L. Han, S. J. Li, and D. C. Fang, Phys. Chem. Chem. Phys. 18, 6182 (2016).

    Article  CAS  Google Scholar 

  21. Y. Li and D. C. Fang, Phys. Chem. Chem. Phys. 16, 15224 (2014).

    Article  CAS  Google Scholar 

  22. L. Zhao, S. J. Li, and D. C. Fang, Chem. Phys. Chem. 16, 3711 (2015).

    Article  CAS  Google Scholar 

  23. S. J. Li and D. C. Fang, Phys. Chem. Chem. Phys. 18, 30815 (2016).

    Article  CAS  Google Scholar 

  24. Y. M. Chen, G. A. Chass, and D. C. Fang, Phys. Chem. Chem. Phys. 16, 1078 (2014).

    Article  CAS  Google Scholar 

  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09 (Gaussian Inc., Wallingford CT, 2009).

    Google Scholar 

  26. C. Lee, W. Yang, and G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  27. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  28. N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Can. J. Chem. 70, 560 (1992).

    Article  CAS  Google Scholar 

  29. C. Sosa and C. Lee, J. Phys. Chem. 96, 6630 (1992).

    Article  CAS  Google Scholar 

  30. S. Miertus, E. Scrocco, and J. Tomasi, Chem. Phys. 55, 117 (1981).

    Article  CAS  Google Scholar 

  31. G. Scalmani and M. J. Frisch, J. Chem. Phys. 132, 114110 (2010).

    Article  CAS  Google Scholar 

  32. J. Y. Tao, W. H. Mu, G. A. Chass, T. H. Tang, and D. C. Fang, Int. J. Quantum Chem. 113, 975 (2013).

    Article  CAS  Google Scholar 

  33. D. C. Fang, SCRF-RADII (Beijing Normal Univ., Beijing, China, 2012).

  34. S. Grimme, J. Chem. Phys. 124, 034108 (2006).

    Article  CAS  Google Scholar 

  35. S. Grimme, Chem.-Eur. J. 18, 9955 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was jointly supported by the Natural Science Foundation of Shandong Province (no. ZR2018LB016) and the Talent Team Culturing Plan for Leading Disciplines of University in Shandong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang Yuan, Han, L. & Liu, T. Theoretical Study on the Mechanisms and Kinetic Parameters for the Initiation Reaction of Grubbs–Hoveyda Catalyst. Russ. J. Phys. Chem. 94, 1034–1039 (2020). https://doi.org/10.1134/S0036024420050271

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420050271

Keywords:

Navigation