Skip to main content
Log in

Spectroscopic Properties of the Barium Sulfide Molecule in Its Low-Lying Electronic States X1Σ+, a3Π, A'1Π, b3Σ+, and A1Σ+

  • PROCEEDINGS OF THE CONFERENCE “PHYSICAL CHEMISTRY IN RUSSIA AND BEYOND: FROM QUANTUM CHEMISTRY TO EXPERIMENT” (CHERNOGOLOVKA)
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The spectroscopic constants re, ωe, ωexe, αe, De, βe and atomization energy of the barium sulfide molecule, BaS, in its electronic ground state X1Σ+ are calculated using the coupled cluster singles, doubles, triples, and quadruples method CCSDTQ in conjunction with complete basis set (CBS) limit extrapolation and taking spin-orbit coupling into account. Excellent agreement of the calculation results with the available experimental data is observed, e.g., the theoretical values of re and ωe deviate from those obtained from spectroscopic measurements by less than 0.001 Å and 1 cm–1, respectively. Correlation of the barium core 5s and 5p electrons is shown to contribute substantially to the values of molecular parameters. Based on an approach combining the coupled cluster theory at the CCSD(T)/CBS level with the multireference configuration interaction (MRCISD+Q) method, a high-accuracy theoretical description of the low-lying excited triplet (a3Π, b3Σ+) and singlet (A1Π, A1Σ+) electronic states of the BaS molecule is reported for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. G. Kalpana, B. Palanivel, and M. Rajagopalan, Phys. Rev. B 50, 12318 (1994). https://doi.org/10.1103/PhysRevB.50.12318

    Article  CAS  Google Scholar 

  2. R. J. Zollweg, Phys. Rev. 111, 113 (1958). https://doi.org/10.1103/PhysRev.111.113

    Article  CAS  Google Scholar 

  3. Z. Morbi and P. F. Bernath, J. Mol. Spectrosc. 171, 210 (1995). https://doi.org/10.1006/jmsp.1995.1113

    Article  CAS  Google Scholar 

  4. H.-J. Werner, P. J. Knowles, G. Knizia, et al., MOLPRO, a package of ab initio programs, Vers. 2015.1. http://www.molpro.net.

  5. C. Hampel, K. A. Peterson, and H.-J. Werner, Chem. Phys. Lett. 190, 1 (1992). https://doi.org/10.1016/0009-2614(92)86093-W

    Article  CAS  Google Scholar 

  6. P. J. Knowles, C. Hampel, and H.-J. Werner, J. Chem. Phys. 99, 5219 (1993); J. Chem. Phys. 112, 3106(E) (2000). https://doi.org/10.1063/1.480886

  7. J. D. Watts, J. Gauss, and R. J. Bartlett, J. Chem. Phys. 98, 8718 (1993). https://doi.org/10.1063/1.464480

    Article  CAS  Google Scholar 

  8. H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988). https://doi.org/10.1063/1.455556

    Article  CAS  Google Scholar 

  9. P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988).https://doi.org/10.1016/0009-2614(88)87412-8

    Article  CAS  Google Scholar 

  10. S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61 (1974). https://doi.org/10.1002/qua.560080106

    Article  CAS  Google Scholar 

  11. H.-J. Werner and P. J. Knowles, J. Chem. Phys. 82, 5053 (1985). https://doi.org/10.1063/1.448627

    Article  CAS  Google Scholar 

  12. P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 115, 259 (1985).https://doi.org/10.1016/0009-2614(85)80025-7

    Article  CAS  Google Scholar 

  13. I. S. Lim, H. Stoll, and P. Schwerdtfeger, J. Chem. Phys. 124, 034107 (2006). https://doi.org/10.1063/1.2148945

    Article  CAS  PubMed  Google Scholar 

  14. H. Li, H. Feng, W. Sun, et al., Mol. Phys. 111, 2292 (2013). https://doi.org/10.1080/00268976.2013.802818

    Article  CAS  Google Scholar 

  15. D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993). https://doi.org/10.1063/1.464303

    Article  CAS  Google Scholar 

  16. K. A. Peterson and T. H. Dunning, J. Chem. Phys. 117, 10548 (2002). https://doi.org/10.1063/1.1520138

    Article  CAS  Google Scholar 

  17. J. M. L. Martin, Chem. Phys. Lett. 259, 669 (1996).https://doi.org/10.1016/0009-2614(96)00898-6

    Article  CAS  Google Scholar 

  18. A. Kramida, Yu. Ralchenko, J. Reader, et al., NIST Atomic Spectra Database. http://www.nist.gov/pml/data/asd.cfm.

  19. K. A. Peterson, D. Feller, and D. A. Dixon, Theor. Chem. Acc. 131, 1079 (2012). https://doi.org/10.1007/s00214-011-1079-5

    Article  CAS  Google Scholar 

  20. V. G. Solomonik and A. N. Smirnov, J. Chem. Theory Comput. 13, 5240 (2017). https://doi.org/10.1021/acs.jctc.7b00408

    Article  CAS  PubMed  Google Scholar 

  21. T. Noro, M. Sekiya, and T. Koga, Theor. Chem. Acc. 132, 1363 (2013). https://doi.org/10.1007/s00214-013-1363-7

    Article  CAS  Google Scholar 

  22. W. A. de Jong, R. J. Harrison, and D. A. Dixon, J. Chem. Phys. 114, 48 (2001). https://doi.org/10.1063/1.1329891

    Article  CAS  Google Scholar 

  23. M. Douglas and N. M. Kroll, Ann. Phys. (N.Y.) 82, 89 (1974).https://doi.org/10.1016/0003-4916(74)90333-9

    Article  CAS  Google Scholar 

  24. B. A. Hess, Phys. Rev. A 33, 3742 (1986). https://doi.org/10.1103/PhysRevA.33.3742

    Article  CAS  Google Scholar 

  25. A. Wolf, M. Reiher, and B. A. Hess, J. Chem. Phys. 117, 9215 (2002). https://doi.org/10.1063/1.1515314

    Article  CAS  Google Scholar 

  26. M. Reiher and A. Wolf, J. Chem. Phys. 121, 10945 (2004). https://doi.org/10.1063/1.1818681

    Article  CAS  PubMed  Google Scholar 

  27. T. Saue, L. Visscher, H. J. Aa. Jensen, et al., DIRAC, A relativistic ab initio electronic structure program. Release 18 (2018). http://www.diracprogram.org.

  28. K. G. Dyall, J. Chem. Phys. 100, 2118 (1994). https://doi.org/10.1063/1.466508

    Article  CAS  Google Scholar 

  29. L. Visscher, Theor. Chem. Acc. 98, 68 (1997). https://doi.org/10.1007/s002140050280

    Article  CAS  Google Scholar 

  30. K. G. Dyall, J. Phys. Chem. A 113, 12638 (2009). https://doi.org/10.1021/jp905057q

    Article  CAS  PubMed  Google Scholar 

  31. Y. C. Park, I. S. Lim, and Y. S. Lee, Bull. Korean Chem. Soc. 33, 803 (2012). https://doi.org/10.5012/bkcs.2012.33.3.803

    Article  CAS  Google Scholar 

  32. L. F. Pacios and P. A. Christiansen, J. Chem. Phys. 82, 2664 (1985). https://doi.org/10.1063/1.448263

    Article  Google Scholar 

  33. M. Kállay, P. R. Nagy, Z. Rolik, et al., MRCC, A quantum chemical program suite. http://www.mrcc.hu.

  34. J. L. Dunham, Phys. Rev. 41, 721 (1932). https://doi.org/10.1103/PhysRev.41.721

    Article  CAS  Google Scholar 

  35. Thermodynamic Properties of Individual Substances, Reference Book, Ed. by L. V. Gurvich (Nauka, Moscow, 1981), Vol. 3, Part 1 [in Russian].

    Google Scholar 

  36. R. F. Barrow, W. G. Burton, and P. A. Jones, Trans. Faraday Soc. 67, 902 (1971). https://doi.org/10.1039/TF9716700902

    Article  CAS  Google Scholar 

  37. P. G. Cummins, R. W. Field, and I. Renhorn, J. Mol. Spectrosc. 90, 327 (1981). https://doi.org/10.1016/0022-2852(81)90131-4

    Article  CAS  Google Scholar 

  38. G. Li, J.-G. Wang, and P. F. Bernath, J. Mol. Spectrosc. 271, 10 (2012). https://doi.org/10.1016/j.jms.2011.10.003

    Article  CAS  Google Scholar 

  39. C. A. Melendres, A. J. Hebert, and K. Street, J. Chem. Phys. 51, 855 (1969). https://doi.org/10.1063/1.1672091

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. FZZW-2020-0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Solomonik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, A.N., Solomonik, V.G. Spectroscopic Properties of the Barium Sulfide Molecule in Its Low-Lying Electronic States X1Σ+, a3Π, A'1Π, b3Σ+, and A1Σ+. Russ. J. Phys. Chem. 94, 956–962 (2020). https://doi.org/10.1134/S0036024420050210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420050210

Keywords:

Navigation