Skip to main content
Log in

Effect of Substituents in Hydrolyzed Cephalosporins on Intramolecular O–H···N Bond

  • PROCEEDINGS OF THE CONFERENCE “PHYSICAL CHEMISTRY IN RUSSIA AND BEYOND: FROM QUANTUM CHEMISTRY TO EXPERIMENT” (CHERNOGOLOVKA)
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Model molecular systems structurally similar to the transition state of the limiting step of the hydrolysis of cephalosporin antibiotics by the L1 metallo-β-lactamase are studied. The series of fluorinated compounds show that the nature of substituents in thiazine and β-lactam rings have a great impact on the strength of the intramolecular O–H···N hydrogen bond that determines the catalytic parameters in real biological systems. The strengthening or weakening of the O–H···N bond is registered via a quantum topological analysis of the electron density, supplemented with various bonding descriptors’ study. The obtained data are confirmed by the analysis of the vibrational frequency shift relatively to the nonfluorinated compound for the O‒H stretching mode of the carboxylic group involved in the O–H···N bond formation. The absence of the monotonic dependence of the hydrogen bond strength on the donor-acceptor effects of substituents shows that considered bonding descriptors do not provide a complete understanding of the bonding mechanisms in the active center of L1 metallo-β-lactamase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. Sliwoski, S. Kothiwale, J. Meiler, and E. W. Lowe, Pharmacol. Rev. 66, 334 (2014). https://doi.org/10.1124/pr.112.007336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Mandal, M. Moudgil, and S. K. Mandal, Eur. J. Pharmacol. 625, 90 (2009). https://doi.org/10.1016/j.ejphar.2009.06.065

    Article  CAS  PubMed  Google Scholar 

  3. A. Warshel and M. Levitt, J. Mol. Biol. 103, 227 (1976). https://doi.org/10.1016/0022-2836(76)90311-9

    Article  CAS  PubMed  Google Scholar 

  4. N. Mardirossian and M. Head-Gordon, Mol. Phys. 115, 2315 (2017). https://doi.org/10.1080/00268976.2017.1333644

    Article  CAS  Google Scholar 

  5. R. F. W. Bader, Atoms in Molecules. Quantum Theory (Clarendon, Oxford, 1994), p. 432.

    Google Scholar 

  6. M. G. Khrenova and V. G. Tsirelson, Mendeleev Commun. 29 (5), 492 (2019). https://doi.org/10.1016/j.mencom.2019.09.004

  7. M. G. Khrenova, A. V. Tomilko, and V. G. Tsirelson, Mosc. Univ. Chem. Bull. 60, 106 (2019).

    Article  Google Scholar 

  8. R. F. W. Bader and H. Essén, J. Chem. Phys. 80, 1943 (1984). https://doi.org/10.1063/1.446956

    Article  CAS  Google Scholar 

  9. L. González et al., J. Chem. Phys. 109, 2685 (1998). https://doi.org/10.1063/1.476868

    Article  Google Scholar 

  10. S. J. Grabowski, T. L. Robinson, and J. Leszczynski, Chem. Phys. Lett. 386, 44 (2004). https://doi.org/10.1016/j.cplett.2004.01.013

    Article  CAS  Google Scholar 

  11. M. V. Vener, E. O. Levina, A. A. Astakhov, et al., Chem. Phys. Lett. 638, 233 (2015). https://doi.org/10.1016/j.cplett.2015.08.053

    Article  CAS  Google Scholar 

  12. E. Espinosa, I. Alkorta, J. Elguero, et al., J. Chem. Phys. 117, 5529 (2002). https://doi.org/10.1063/1.1501133

    Article  CAS  Google Scholar 

  13. D. Cremer, E. Kraka, T. S. Slee, et al., J. Am. Chem. Soc. 105, 5069 (1983). https://doi.org/10.1021/ja00353a036

    Article  CAS  Google Scholar 

  14. M. G. Khrenova and A. V. Nemukhin, J. Phys. Chem. B 122, 1378 (2018). https://doi.org/10.1021/acs.jpcb.7b10188

    Article  CAS  PubMed  Google Scholar 

  15. M. W. Crowder, T. R. Walsh, L. Banovic, et al., Antimicrob. Agents Chemother. 42, 921 (1998). https://doi.org/10.1128/AAC.42.4.921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A. Felici and G. Amicosante, Antimicrob. Agents Chemother. 39, 192 (1995). https://doi.org/10.1128/AAC.39.1.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. G. Khrenova, A. V. Krivitskaya, and V. G. Tsirelson, New J. Chem. 43, 7329 (2019). https://doi.org/10.1039/C9NJ00254E

  18. A. A. Granovsky, Firefly, Version 8. http://classic.chem.msu.su/gran/firefly/index.html.

  19. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999). https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  20. S. Grimme, J. Antony, S. Ehrlich, et al., J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344

    Article  CAS  Google Scholar 

  21. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012). https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  22. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts (Wiley, New York, 2004).

    Google Scholar 

  23. M. Rozenberg, A. Loewenschuss, and Y. Marcus, Phys. Chem. Chem. Phys. 2, 2699 (2000). https://doi.org/10.1039/B002216K

    Article  CAS  Google Scholar 

  24. T. Steiner, Angew. Chem., Int. Ed. Engl. 41, 48 (2002). https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U

    Article  CAS  Google Scholar 

  25. M. Rozenberg, RSC Adv. 4, 26928 (2014). https://doi.org/10.1039/C4RA03889D

  26. A. V. Afonin, A. V. Vashchenko, and M. V. Sigalov, Org. Biomol. Chem 14, 11199 (2016). https://doi.org/10.1039/C6OB01604A

    Article  CAS  PubMed  Google Scholar 

  27. R. Parthasarathi, V. Subramanian, and N. Sathyamurthy, J. Phys. Chem. A 110, 3349 (2006). https://doi.org/10.1021/jp060571z

    Article  CAS  PubMed  Google Scholar 

  28. I. Mata, I. Alkorta, E. Espinosa, et al., Chem. Phys. Lett. 507, 185 (2011). https://doi.org/10.1016/j.cplett.2011.03.055

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-74-10056. The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Levina.

Ethics declarations

The authors have no conflicts of interest to declare.

Additional information

Translated by P. Vlasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levina, E.O., Khrenova, M.G. & Tsirelson, V.G. Effect of Substituents in Hydrolyzed Cephalosporins on Intramolecular O–H···N Bond. Russ. J. Phys. Chem. 94, 925–932 (2020). https://doi.org/10.1134/S0036024420050131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420050131

Keywords:

Navigation