Skip to main content
Log in

Experimental Spectroscopic and Theoretical Studies of New Synthesized Sulfonamide Derivatives

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this paper, two new Schiff bases (L1 and L2) derived from substituted salicylaldehyde and sulfamethoxazole/sulfisoxazole were synthesized. The synthesized structures were elucidated by experimental spectroscopic methods such as FT-IR, 1H-13C NMR, 1H, and 13C shielding tensors, and elemental analysis. The theoretical vibrational modes and nonlinear optical (NLO) properties have been computed by DFT/B3LYP/6-311G(d,p) method. Theoretical 1H and 13C shielding tensors were calculated with GIAO methods in CDCl3 with same level of theory. The results have shown that there is perfect harmony between the calculated parameters and recorded experimental data. The first order hyperpolarizabilities of the new synthesized compounds are 201.79 and 113.14 times larger than that of urea (0.3728 × 10–30 esu), respectively. According to evaluated results, the L1 and L2 present large nonlinear optical activity and are candidate molecules for nonlinear optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Z. H. Chohan, H. A. Shad, and F. H. Nasim, Appl. Organomet. Chem. 23, 319 (2009).

    Article  CAS  Google Scholar 

  2. A. E. Boyd, Diabetes. 37, 847 (1988).

    Article  CAS  Google Scholar 

  3. R. Kasımogulları, M. Bülbül, et al., Eur. J. Med. Chem. 45, 4769 (2010).

    Article  Google Scholar 

  4. L. de Luca, S. Ferro, F. M. Damiano, et al., Eur. J. Med. Chem. 71, 105 (2014).

    Article  CAS  Google Scholar 

  5. A. D. Wright, M. H. Winterborn, P. J. Forster, J. P. Delamere, G. L. Harrison, and A. R. Bradwell, J. Wilderness Med. 5, 49 (1994).

    Article  Google Scholar 

  6. L. Sun, Y. Wu, Y. Liu, X. Chen, and L. Hu, Bioorg. Med. Chem. Lett. 27, 261 (2017).

    Article  CAS  Google Scholar 

  7. H. Yoshino, N. Ueda, et al., J. Med. Chem. 35, 2496 (1992).

    Article  CAS  Google Scholar 

  8. C. T. Supuran, Expert Opin. Drug Disc. 12, 61 (2017).

    Article  CAS  Google Scholar 

  9. N. Özbek, H. Katırcıoglu, N. Karacan, and T. Baykal, Bioorg. Med. Chem. 15, 5105 (2007).

    Article  Google Scholar 

  10. N. Özbek, S. Alyar, H. Alyar, E. Sahin, and N. Karacan, Spectrochim. Acta, Part A 108, 123 (2013).

    Article  Google Scholar 

  11. F. Akyıldız, S. Alyar, M. T. Bilkan, and H. Alyar, J. Mol. Struct. 1174, 160 (2018).

    Article  Google Scholar 

  12. S. Alyar, T. Şen, Ü. Ö. Özmen, H. Alyar, S. Adem, and C. Şen, J. Mol. Struct. 1185, 416 (2019).

    Article  CAS  Google Scholar 

  13. U. Özdemir, N. Karacan, O.S. Senturk, S. Sert, and F. Uğur, Synth. React. Inorg. Metal.-Org. Chem. 34, 1057 (2004).

    Article  Google Scholar 

  14. N. Özbek, S. Alyar, and N. Karacan, J. Mol. Struct. 938, 48 (2009).

    Article  Google Scholar 

  15. A.B. Gündüzalp, Ü. Ö. Özmen, et al., Med. Chem. Res. 23, 3255 (2014).

    Article  Google Scholar 

  16. N. Özbek, G. Kavak, Y. Özcan, S. Ide, and N. Karacan, J. Mol. Struct. 919, 154 (2009).

    Article  Google Scholar 

  17. M. J. Frisch et al., Gaussian 09, Revision B.01 (Gaussian Inc., C.T. Wallingford, 2009).

  18. R. D. Dennington, T. A. Keith, and J. M. Millam, GaussView 5 (Gaussian, Inc., 2008).

    Google Scholar 

  19. M. H. Jamróz, Vibrational Energy Distribution Analysis (VEDA 4, Warsaw, 2004).

  20. M. T. Bilkan, J. Mol. Liq. 238, 523 (2017).

    Article  CAS  Google Scholar 

  21. M. T. Bilkan, Russ. J. Phys. Chem. A 92, 1920 (2018).

    Article  Google Scholar 

  22. A. Mahmood, T. Akram, and E. B. de Lima, J. Mol. Struct. 1108, 496 (2016).

    Article  CAS  Google Scholar 

  23. F. Blanco, I. Alkorta, and J. Elguero, Magn. Reson. Chem. 45, 797 (2007).

    Article  CAS  Google Scholar 

  24. A. M. S. Silva, R. M. S. Sousa, M. L. Jimeno, F. Blanco, I. Alkorta, and J. Elguero, Magn. Reson. Chem. 46, 859 (2008).

    Article  CAS  Google Scholar 

  25. H. Soscun, O. Castellano, et al., J. Mol. Struct.: THEOCHEM 592, 19 (2002).

    Article  CAS  Google Scholar 

  26. K. S. Thanthiriwatte and K. M. Nalin de Silva, J. Mol. Struct.: THEOCHEM 617, 169 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Bilkan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilkan, M.T., Alyar, S. & Alyar, H. Experimental Spectroscopic and Theoretical Studies of New Synthesized Sulfonamide Derivatives. Russ. J. Phys. Chem. 94, 143–151 (2020). https://doi.org/10.1134/S0036024420010045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420010045

Keywords:

Navigation