Skip to main content
Log in

The Study of Mg(II) Ion Influence on Catechol Autoxidation in Weakly Alkaline Aqueous Solution

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

High performance liquid chromatography with diode array detection (HPLC-DAD) and electron spin resonance (ESR) spectroscopy were used to study Mg(II) ion influence on the autoxidation of catechol in weakly alkaline solution. The presence of Mg(II) ions greatly enhanced the catechol autoxidation rate and probably influenced the mechanism of reaction thus enabling formation of reaction products not obtained in the absence of metal ions. Consecutive formation of 1,2-benzoquinone, 2,3-oxanthrenediol, and 2,3-oxanthrenedione with intermediate o-semiquinone anion radicals during the initial stages of catechol autoxidation was suggested based on the detailed analysis of experimental HPLC-DAD and ESR data. The results of this study may help in better understanding of autoxidation of some biologically important catecholic molecules in real systems, where Mg(II) ions are ubiquitously present. Because of the possible toxicity of simple quinone molecules, it is important that the formation of relatively stable quinoid autoxidation products were detected in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Quideau, D. Deffieux, C. Douat-Casassus, and L. Pouységu, Angew. Chem. Int. Ed. 50, 586 (2011).

    Article  CAS  Google Scholar 

  2. D. P. Yang, H. F. Ji, G. Y. Tang, W. Ren, and H. Y. Zhang, Molecules 12, 578 (2007).

    Google Scholar 

  3. G. P. Maier, C. M. Bernt, and A. Butler, Biomater. Sci. 6, 332 (2018).

    Article  CAS  Google Scholar 

  4. M. Friedman and H. S. Jürgens, J. Agric. Food Chem. 48, 2101 (2000).

    Article  CAS  Google Scholar 

  5. J. Balla, T. Kiss, and R. F. Jameson, Inorg. Chem. 31, 58 (1992).

    Article  CAS  Google Scholar 

  6. P. García, C. Romero, M. Brenes, and A. Garrido, J. Agric. Food Chem. 44, 2101 (1996).

    Article  Google Scholar 

  7. G. M. Nikolić, P. I. Premović, and R. S. Nikolić, Spectrosc. Lett. 31, 327 (1998).

    Article  Google Scholar 

  8. A. V. Lebedev, M. V. Ivanova, A. A. Timoshin, and E. K. Ruuge, ChemPhysChem 8, 1863 (2007).

    Article  CAS  Google Scholar 

  9. E. Nikhili, M. Loonis, S. Mihai, H. El Hajji, and O. Dangles, Food Funct. 5, 1186 (2014).

    Article  Google Scholar 

  10. C. P. Monteiro, C. N. Matias, M. Bicho, H. Santa-Clara, and M. J. Laires, Magnes. Res. 29, 161 (2016).

    CAS  PubMed  Google Scholar 

  11. S. C. Živanović, R. S. Nikolić, and G. M. Nikolić, Acta Fac. Med. Naiss. 33, 163 (2016).

    Google Scholar 

  12. S. C. Živanovic, R. S. Nikolić, D. A. Kostic, and G. M. Nikolić, Oxid. Commun. 40, 581 (2017).

    Google Scholar 

  13. S. C. Živanović, A. M. Veselinović, Ž. J. Mitić, and G. M. Nikolić, New J. Chem. 42, 6256 (2018).

    Article  Google Scholar 

  14. L. V. Volod’ko, A. I. Komyak, A. A. Min’ko, B. A. Tatarinov, and P. A. Matusevich, J. Appl. Spectrosc. 24, 717 (1976).

    Article  Google Scholar 

  15. R. Hoskins, J. Chem. Phys. 23, 1975 (1955).

    Article  CAS  Google Scholar 

  16. D. R. Eaton, Inorg. Chem. 3, 1268 (1964).

    Article  CAS  Google Scholar 

  17. C. C. Felix and R. C. Sealy, J. Am. Chem. Soc. 104, 1555 (1982).

    Article  CAS  Google Scholar 

  18. W. G. C. Forsyth, V. C. Quesnel, and J. B. Roberts, Biochim. Biophys. Acta 37, 322 (1960).

    Article  CAS  Google Scholar 

  19. M. B. McBride and F. J. Sikora, J. Inorg. Biochem. 39, 247 (1990).

    Article  CAS  Google Scholar 

  20. A. Naidja, P. M. Huang, and J.-M. Bollag, Soil Sci. Soc. Am. J. 62, 188 (1998).

    Article  CAS  Google Scholar 

  21. F. Solano, New J. Sci. 2014, 498276 (2014).

    Article  Google Scholar 

  22. J. L. Bolton and T. Dunlap, Chem. Res. Toxicol. 30, 13 (2017).

    Article  CAS  Google Scholar 

  23. T. M. Penning, Toxicol. Res. 6, 740 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partially supported by the Ministry for Science and Technological Development of the Republic of Serbia (grant no. 172044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Nikolić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolić, G.M., Živanović, S.C., Krstić, N.S. et al. The Study of Mg(II) Ion Influence on Catechol Autoxidation in Weakly Alkaline Aqueous Solution. Russ. J. Phys. Chem. 93, 2656–2660 (2019). https://doi.org/10.1134/S0036024419130223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419130223

Keywords:

Navigation