Abstract
High performance liquid chromatography with diode array detection (HPLC-DAD) and electron spin resonance (ESR) spectroscopy were used to study Mg(II) ion influence on the autoxidation of catechol in weakly alkaline solution. The presence of Mg(II) ions greatly enhanced the catechol autoxidation rate and probably influenced the mechanism of reaction thus enabling formation of reaction products not obtained in the absence of metal ions. Consecutive formation of 1,2-benzoquinone, 2,3-oxanthrenediol, and 2,3-oxanthrenedione with intermediate o-semiquinone anion radicals during the initial stages of catechol autoxidation was suggested based on the detailed analysis of experimental HPLC-DAD and ESR data. The results of this study may help in better understanding of autoxidation of some biologically important catecholic molecules in real systems, where Mg(II) ions are ubiquitously present. Because of the possible toxicity of simple quinone molecules, it is important that the formation of relatively stable quinoid autoxidation products were detected in this study.
Similar content being viewed by others
REFERENCES
S. Quideau, D. Deffieux, C. Douat-Casassus, and L. Pouységu, Angew. Chem. Int. Ed. 50, 586 (2011).
D. P. Yang, H. F. Ji, G. Y. Tang, W. Ren, and H. Y. Zhang, Molecules 12, 578 (2007).
G. P. Maier, C. M. Bernt, and A. Butler, Biomater. Sci. 6, 332 (2018).
M. Friedman and H. S. Jürgens, J. Agric. Food Chem. 48, 2101 (2000).
J. Balla, T. Kiss, and R. F. Jameson, Inorg. Chem. 31, 58 (1992).
P. García, C. Romero, M. Brenes, and A. Garrido, J. Agric. Food Chem. 44, 2101 (1996).
G. M. Nikolić, P. I. Premović, and R. S. Nikolić, Spectrosc. Lett. 31, 327 (1998).
A. V. Lebedev, M. V. Ivanova, A. A. Timoshin, and E. K. Ruuge, ChemPhysChem 8, 1863 (2007).
E. Nikhili, M. Loonis, S. Mihai, H. El Hajji, and O. Dangles, Food Funct. 5, 1186 (2014).
C. P. Monteiro, C. N. Matias, M. Bicho, H. Santa-Clara, and M. J. Laires, Magnes. Res. 29, 161 (2016).
S. C. Živanović, R. S. Nikolić, and G. M. Nikolić, Acta Fac. Med. Naiss. 33, 163 (2016).
S. C. Živanovic, R. S. Nikolić, D. A. Kostic, and G. M. Nikolić, Oxid. Commun. 40, 581 (2017).
S. C. Živanović, A. M. Veselinović, Ž. J. Mitić, and G. M. Nikolić, New J. Chem. 42, 6256 (2018).
L. V. Volod’ko, A. I. Komyak, A. A. Min’ko, B. A. Tatarinov, and P. A. Matusevich, J. Appl. Spectrosc. 24, 717 (1976).
R. Hoskins, J. Chem. Phys. 23, 1975 (1955).
D. R. Eaton, Inorg. Chem. 3, 1268 (1964).
C. C. Felix and R. C. Sealy, J. Am. Chem. Soc. 104, 1555 (1982).
W. G. C. Forsyth, V. C. Quesnel, and J. B. Roberts, Biochim. Biophys. Acta 37, 322 (1960).
M. B. McBride and F. J. Sikora, J. Inorg. Biochem. 39, 247 (1990).
A. Naidja, P. M. Huang, and J.-M. Bollag, Soil Sci. Soc. Am. J. 62, 188 (1998).
F. Solano, New J. Sci. 2014, 498276 (2014).
J. L. Bolton and T. Dunlap, Chem. Res. Toxicol. 30, 13 (2017).
T. M. Penning, Toxicol. Res. 6, 740 (2017).
ACKNOWLEDGMENTS
This work was partially supported by the Ministry for Science and Technological Development of the Republic of Serbia (grant no. 172044).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nikolić, G.M., Živanović, S.C., Krstić, N.S. et al. The Study of Mg(II) Ion Influence on Catechol Autoxidation in Weakly Alkaline Aqueous Solution. Russ. J. Phys. Chem. 93, 2656–2660 (2019). https://doi.org/10.1134/S0036024419130223
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0036024419130223