Skip to main content
Log in

Anisotropic Conductive Membrane with Superparamagnetism and Color-Tunable Luminescence

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A new nanostructure of luminescent-magnetic-electrical trifunctionality Janus nanofibers with [Fe3O4/polyvinyl pyrrolidone (PVP)]@[Dy(BA)3phen/Eu(BA)3phen/PVP] coaxial nanocable as one half and polyaniline (PANI)/PVP as the other half has been successfully fabricated by a specially designed co-axis//single-axis spinneret electrospinning device. Moreover, all Janus nanofibers are aligned in the same direction to generate a two-dimensional (2D) array membrane by using an aluminum drum collection device. The electrical conductivity along the length direction is much stronger than the electrical conductivity in the diameter direction (two perpendicular directions). Therefore, the array membrane has excellent anisotropic electrical conduction. The conduction ratio reaches 106 times between length and diameter direction of the Janus nanofibers array membrane, which presents the highest conduction ratio between the two perpendicular directions for nanofibers materials reported internationally. Furthermore, we can modulate degree of electrically conducting anisotropism of the samples by varying the amount of PANI. In addition, the Janus nanofibers array membrane is concurrently endowed by superior and adjustable superparamagnetism and color-tunable fluorescence. What is more important, the construction technique for the novel Janus nanofibers array membrane is of universal significance for the fabrication of other multifunctional nanomaterials-formed membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. N. I. Kovtyukhova and T. E. Mallouk, J. Phys. Chem. B 109, 2540 (2005).

    Article  CAS  Google Scholar 

  2. C. Feng, K. Liu, J. S. Wu, L. Liu, J. S. Cheng, Y. Y. Zhang, Y. H. Sun, Q. Q. Li, S. S. Fan, and K. L. Jiang, Adv. Funct. Mater. 20, 885 (2010).

    Article  CAS  Google Scholar 

  3. J. R. Huang, Y. T. Zhu, W. Jiang, and Q. X. Tang, ACS Appl. Mater. Interfaces 6, 1754 (2014).

    Article  CAS  Google Scholar 

  4. W. A. D. Heer, A. Chatelain, and D. Ugarte, Science (Washington, DC, U. S.) 270, 1179 (1995).

    Article  Google Scholar 

  5. Q. L. Ma, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, Adv. Funct. Mater. 25, 2436 (2015).

    Article  CAS  Google Scholar 

  6. Q. L. Ma, W. S. Yu, X. T. Dong, M. Yang, J. X. Wang, and G. X. Liu, Sci. Rep. 5, 14583 (2015).

    Article  CAS  Google Scholar 

  7. L. Han, M. M. Pan, Y. Lv, Y. T. Gu, X. F. Wang, D. Li, Q. L. Kong, and X. T. Dong, J. Mater. Sci. Mater. Electron. 26, 677 (2015).

    Article  CAS  Google Scholar 

  8. X. Xi, Q. L. Ma, M. Yang, X. T. Dong, J. X. Wang, W. S. Yu, and G. X. Liu, J. Mater. Sci. Mater. Electron. 25, 4024 (2014).

    Article  CAS  Google Scholar 

  9. J. Tian, Q. L. Ma, W. S. Yu, X. T. Dong, Y. Yang, B. Zhao, J. X. Wang, and G. X. Liu, New J. Chem. 41, 13983 (2017).

    Article  CAS  Google Scholar 

  10. X. B. Li, Q. L. Ma, J. Tian, X. Xi, D. Li, X. T. Dong, W. S. Yu, X. L. Wang, J. X. Wang, and G. X. Liu, Nanoscale 9, 18918 (2017).

    Article  CAS  Google Scholar 

  11. K. Lun, Q. L. Ma, M. Yang, X. T. Dong, Y. Yang, J. X. Wang, W. S. Yu, and G. X. Liu, J. Mater. Sci. Mater. Electron. 26, 5994 (2015).

    Article  CAS  Google Scholar 

  12. Q. L. Ma, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, Chem. Eng. J. 222, 16 (2013).

    Article  CAS  Google Scholar 

  13. H. Shao, Q. L. Ma, X. T. Dong, W. S. Yu, M. Yang, Y. Yang, J. X. Wang, and G. X. Liu, Phys. Chem. Chem. Phys. 17, 21845 (2015).

    Article  CAS  Google Scholar 

  14. Q. L. Ma, J. X. Wang, X. T. Dong, W. S. Yu, and G. X. Liu, Nanoscale 6, 2945 (2014).

    Article  CAS  Google Scholar 

  15. X. Xi, J. X. Wang, X. T. Dong, Q. L. Ma, W. S. Yu, and G. X. Liu, Chem. Eng. J. 254, 259 (2014).

    Article  CAS  Google Scholar 

  16. X. Xi, Q. L. Ma, X. T. Dong, D. Li, W. S. Yu, J. X. Wang, and G. X. Liu, J. Mater. Sci. Mater. Eletron. 29, 7119 (2018).

    Article  CAS  Google Scholar 

  17. Y. Y. Zheng, X. B. Wang, L. Shang, C. R. Li, C. Cui, W. J. Dong, W. H. Tang, and B. Y. Chen, Mater. Charact. 61, 489 (2010).

    Article  CAS  Google Scholar 

  18. S. Meshkova, J. Fluoresc. 10, 333 (2000).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by National Natural Science Foundation of China (51573023, 51803012), Natural Science Foundation of Jilin Province (20170101101JC, 20180520011JH), Science and Technology Research Planning Project of the Education Department of Jilin Province during the 13th five-year plan period (JJKH20170608KJ, JJKH20181122KJ), and Innovative Foundation (XJJLG-2017-04) and Youth Foundation (XQNJJ-2016-01, XQNJJ-2017-17) of Changchun University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qianli Ma or Xiangting Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue Xi, Ma, Q., Dong, X. et al. Anisotropic Conductive Membrane with Superparamagnetism and Color-Tunable Luminescence. Russ. J. Phys. Chem. 93, 2444–2451 (2019). https://doi.org/10.1134/S0036024419120331

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419120331

Keywords:

Navigation