Skip to main content
Log in

Intermolecular Interactions of Hybrid Organic Dyes Based on Coumarin 343 for Optoelectronic Applications

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Understanding the intermolecular interactions in the organic dye mixtures could be critical for the design of high-performance optoelectronic devices. In the present study, we investigate the intermolecular interactions in dye systems combining two kinds of organic dyes, using the coumarin 343 (C343) as an example. The study employs the first principles calculations and the spectroscopic/electrochemical experiments to explore the intermolecular interactions (either synergistic or antagonistic) and their effects on the electronic and optical properties of the hybrid dye systems. The interactions between the coumarin dye and four other dyes, either as free dyes or as self-assembled monolayers that are adsorbed onto semiconductor substrate, are analyzed via the UV–Vis absorption, the emission and the photocurrent measurements. The four dyes include 4-(4-diethylaminophenylazo)pyridine, chlorophosphonazo III, methyl red, and catechol, which have been applied to optoelectronic devices. In particular, the interaction between C343 and 4‑(4‑diethylaminophenylazo)pyridine is found to be synergistic for the photocurrent generation using the aqueous electrolyte, which is not observed in other systems. The study suggests importance of the intermolecular interactions in the hybrid-dye systems, and might provide fundamental insights on the intermolecular interactions that could be leveraged to design optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Z. Yu, F. Li, and L. Sun, Energy Environ. Sci. 8, 760 (2015).

    Article  CAS  Google Scholar 

  2. F. Li, K. Fan, B. Xu, E. Gabrielsson, Q. Daniel, L. Li, and L. Sun, J. Am. Chem. Soc. 137, 9153 (2015).

    Article  CAS  Google Scholar 

  3. J. W. Youngblood, S. H. A. Lee, Y. Kobayashi, E. A. Hernandez-Pagan, P. G. Hoertz, T. A. Moore, A. L. Moore, D. Gust, and T. E. Mallouk, J. Am. Chem. Soc. 131, 926 (2009).

    Article  CAS  Google Scholar 

  4. A. C. Fahrenbach, S. C. Warren, J. T. Incorvati, A. J. Avestro, J. C. Barnes, J. F. Stoddart, and B. A. Grzybowski, Adv. Mater. 25, 331 (2013).

    Article  CAS  Google Scholar 

  5. L. Zhang and J. M. Cole, J. Mater. Chem. A 5, 19541 (2017).

    Article  CAS  Google Scholar 

  6. K. Meyer, M. Ranocchiari, and J. A. van Bokhoven, Energy Environ. Sci. 8, 1923 (2015).

    Article  CAS  Google Scholar 

  7. Y. Zhao and K. Zhu, Chem. Soc. Rev. 45, 655 (2016).

    Article  CAS  Google Scholar 

  8. C. F. A. Negre, K. J. Young, M. B. Oviedo, L. J. Allen, C. G. Sánchez, K. N. Jarzembska, J. B. Benedict, R. H. Crabtree, P. Coppens, G. W. Brudvig, et al., J. Am. Chem. Soc. 136, 16420 (2014).

    Article  CAS  Google Scholar 

  9. X. Liu, J. M. Cole, and K. S. Low, J. Phys. Chem. C 117, 14731 (2013).

    Article  CAS  Google Scholar 

  10. J. D. Sokolow, E. Trzop, Y. Chen, J. Tang, L. J. Allen, R. H. Crabtree, J. B. Benedict, and P. Coppens, J. Am. Chem. Soc. 134, 11695 (2012).

    Article  CAS  Google Scholar 

  11. N. Martsinovich and A. Troisi, Energy Environ. Sci. 4, 4473 (2011).

    Article  CAS  Google Scholar 

  12. X. Liu, J. M. Cole, P. G. Waddell, T. Lin, S. Mckechnie, and J. J. Thomson, J. Phys. Chem. C 117, 14130 (2013).

    Article  CAS  Google Scholar 

  13. J. McCree-Grey, J. M. Cole, and P. J. Evans, ACS Appl. Mater. Interfaces 7, 16404 (2015).

    Article  CAS  Google Scholar 

  14. L. Zhang and Q. Wang, J. Mol. Struct. 1155, 389 (2018).

    Article  CAS  Google Scholar 

  15. L. Zhang, X. Liu, J. Su, and J. Li, J. Phys. Chem. C 120, 23536 (2016).

    Article  CAS  Google Scholar 

  16. Y. J. Yuan, Z. T. Yu, D. Q. Chen, and Z. G. Zou, Chem. Soc. Rev. 46, 603 (2017).

    Article  CAS  Google Scholar 

  17. B. O’Regan and M. Grätzel, Nature (London, U.K.) 353, 737 (1991).

    Article  Google Scholar 

  18. L. Zhang and J. M. Cole, Phys. Chem. Chem. Phys. 18, 19062 (2016).

    Article  CAS  Google Scholar 

  19. L. Zhang, J. M. Cole, P. G. Waddell, K. S. Low, and X. Liu, ACS Sustain. Chem. Eng. 1, 1440 (2013).

    Article  CAS  Google Scholar 

  20. B. Delley, J. Chem. Phys. 113, 7756 (2000).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (no. 51702165), the Jiangsu province “Double Plan” project (R2016SCB02), and the Jiangsu Provincial Natural Science Foundation (grant nos. BK20160942 and BK20160941). The authors acknowledge computational support from NSCCSZ Shenzhen, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuai Lin, Zhang, L., Wu, B. et al. Intermolecular Interactions of Hybrid Organic Dyes Based on Coumarin 343 for Optoelectronic Applications. Russ. J. Phys. Chem. 93, 2542–2549 (2019). https://doi.org/10.1134/S0036024419120288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419120288

Keywords:

Navigation