Skip to main content
Log in

Catalytic Metathesis of N-Methylformamide with Dimethyl Carbonate by Alcohol Associates

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The mechanism of N-methylformamide metathesis with dimethyl carbonate, which leads to the formation of N,O-dimethyl carbamate, is studied using the quantum-chemical B3LYP/6-311++G(df,p) approach. The reaction consists of three stages: the conversion of formamide to iminol; the adding of dimethyl carbonate at the azomethine bond of iminol; and decomposition of the resulting product into carbamate and methyl formate. The second stage limits the rate of interaction. All stages proceed through concerted cyclic transition state, and all of them are catalyzed efficiently by a monomer and a dimer of methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. M. Selva, C. A. Marque, and P. Tundo, Cazz. Chim. Ital. 123, 515 (1993).

    CAS  Google Scholar 

  2. S. P. Gupte, A. B. Shivarkar, and R. V. Chaudhari, Chem. Commun., No. 24, 2620 (2001).

  3. A. B. Shivarkar, S. P. Gupte, and R. V. Chaudhari, J. Mol. Catal. A 223, 85 (2004).

    Article  CAS  Google Scholar 

  4. X. Guo, J. Shang, J. Li, et al., Synthet. Commun. 41, 1102 (2011).

    Article  CAS  Google Scholar 

  5. T. Duong, R. H. Prager, A. D. Ward, and D. I. B. Kerr, Aust. J. Chem. 29, 2651 (1976).

    Article  CAS  Google Scholar 

  6. R. W. Mason, US Patent No. 6781010.

  7. U. Romano and R. Tesei, US Patent No. 4100351.

  8. N. Kébir, M. Benoit, C. Legrand, and F. Burel, Eur. Polym. J. 96, 87 (2017).

    Article  CAS  Google Scholar 

  9. N. Kebir, M. Benoit, and F. Burel, Eur. Polym. J. 107, 155 (2018).

    Article  CAS  Google Scholar 

  10. D. Wu, X. Fu, F. Xiao, J. Li, N. Zhao, W. Sun, and Y. Wei, Catal. Commun. 9, 680 (2008).

    Article  CAS  Google Scholar 

  11. J. J. Gao, H. Q. Li, and Y. Zhang, Chin. Chem. Lett. 18, 149 (2007).

    Article  CAS  Google Scholar 

  12. E. Gattiglia, F. Turturro, F. P. Lamantia, and A. Valenza, J. Appl. Polym. Sci. 46, 1887 (1992).

    Article  CAS  Google Scholar 

  13. Transreactions in Condensation Polymers, Ed. by S. Fakirov (Wiley-VCH, Weimheim, 1999).

    Google Scholar 

  14. D. A. Costa, C. Marize, and F. Oliveira, Int. J. Polym. Mater. 51, 393 (2002).

    Article  CAS  Google Scholar 

  15. Reactive Extrusion. Principles and Applications, Ed. by G. Beyer and Ch. Hopmann (Wiley-VCH, Weimheim, 2018).

    Google Scholar 

  16. H. Sardon, A. Pascual, D. Mecerreyes, et al., Macromolecules 48, 3153 (2015).

    Article  CAS  Google Scholar 

  17. L. Maisonneuve, O. Lamarzelle, E. Rix, et al., Chem. Rev. 115, 12407 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. J. Y. Simon, The Toxicology and Biochemistry of Insecticides (CRC, Boca Raton, FL, 2015).

    Google Scholar 

  19. A. K. Ghosh and M. Brindisi, J. Med. Chem. 58, 2895 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J. E. Cheong, M. Zaffagni, I. Chung, et al., Eur. J. Med. Chem. 144, 372 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. F. Aricò and P. Tundo, Russ. Chem. Rev. 79, 479 (2010).

    Article  CAS  Google Scholar 

  22. P. Wang, Sh. Liu, and Y. Deng, Chin. J. Chem. 35, 821 (2017).

    Article  CAS  Google Scholar 

  23. L. Z. Pillon and L. A. Utracki, Polym. Eng. Sci. 24, 1300 (1984).

    Article  CAS  Google Scholar 

  24. J.-Ch. Ho and K.-H. Wei, J. Polym. Sci., Part B 38, 2124 (2000).

    Article  CAS  Google Scholar 

  25. F.-Ch. Pai, S.-M. Lai, and H. H. Chu, J. Appl. Polym. Sci. 130, 2563 (2013).

    Article  CAS  Google Scholar 

  26. J. Gug and M. J. Sobkowicz, J. Appl. Polym. Sci. 133, 43350 (2016).

    Article  CAS  Google Scholar 

  27. S. Fakirov, Prog. Polym. Sci. (2018). https://doi.org/10.1016/j.progpolymsci.2018.09.003

    Article  CAS  Google Scholar 

  28. J.-X. Guo and J.-J. Ho, J. Phys. Chem. A 103, 6433 (1999).

    Article  CAS  Google Scholar 

  29. P. E. Allegrettia, C. B. Milazzoa, E. A. Castrob, et al., J. Mol. Struct.: THEOCHEM 589–590, 161 (2002).

    Article  Google Scholar 

  30. M. K. Hazra and T. Chakraborty, J. Phys. Chem. A 109, 7621 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. D. Guzmán-Angel, R. Inostroza-Rivera, S. Gutiérrez-Oliva, et al., Theor. Chem. Acc. 135, 37 (2016).

    Article  CAS  Google Scholar 

  32. R. M. Vichietti, A. B. F. da Silva, and R. L. A. Haiduke, Mol. Astrophys. 10, 1 (2018).

    Article  Google Scholar 

  33. S. T. Gadge, A. Mishra, A. L. Gajengi, et al., RSC Adv. 4, 50271 (2014).

    Article  CAS  Google Scholar 

  34. K. H. Bouhadir, L. Abramian, A. Ezzeddine, et al., Molecules 17, 13290 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. E. Marsault, H. R. Hoveyda, M. L. Peterson, et al., J. Med. Chem. 49, 7190 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. W.-Ch. Shieh, S. Dell, A. Bach, et al., Org. Chem. 68, 1954 (2003).

    Article  CAS  Google Scholar 

  37. A. James, J. A. Cella, and S. W. Bacon, Org. Chem. 49, 1122 (1984).

    Article  Google Scholar 

  38. A. W. Burgstahler, J. Am. Chem. Soc. 73, 3021 (1951).

    Article  CAS  Google Scholar 

  39. H. Bredereck, G. Simchen, and E. Goknel, Angew. Chem., Int. Ed. Engl. 3, 704 (1964).

    Article  Google Scholar 

  40. H. Ulrich and A. A. R. Sayigh, Angew. Chem., Int. Ed. Engl. 6, 844 (1966).

    Article  Google Scholar 

  41. G.-Y. Yeap, A.-T. Mohammad, and H. Osman, Mol. Cryst. Liq. Cryst. 552, 177 (2012).

    Article  CAS  Google Scholar 

  42. A.-T. Mohammad, G.-Y. Yeap, and H. Osman, J. Mol. Struct. 1087, 88 (2015).

    Article  CAS  Google Scholar 

  43. I. A. Mohammed, M. Ahmed, R. Ikram, et al., Lat. Am. J. Pharm. 37, 540 (2018).

    CAS  Google Scholar 

  44. T. Tsuneda, Density Functional Theory in Quantum Chemistry (Springer, Tokyo, Heidelberg, New York, Dordrecht, London, 2014).

    Book  Google Scholar 

  45. V. Sahni, Quantal Density Functional Theory (Springer, Berlin, Heidelberg, 2016).

    Book  Google Scholar 

  46. A. D. Becke, J. Chem. Phys. 96, 2155 (1992).

    Article  CAS  Google Scholar 

  47. A. D. Becke, J. Chem. Phys. 97, 9173 (1992).

    Article  CAS  Google Scholar 

  48. A. D. Becke, J. Chem. Phys 98, 5648 (1993).

    Article  CAS  Google Scholar 

  49. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Revision A.1 (Gaussian Inc., Wallingford CT, 2009).

    Google Scholar 

  50. S. K. Reddy and S. Balasubramanian, J. Phys. Chem. B 116, 14892 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. L. Gontrani, O. Russina, and F. C. Marincola, J. Chem. Phys. 131, 244503 (2009).

    Article  PubMed  CAS  Google Scholar 

  52. D. Guzmán-Angel, R. Inostroza-Rivera, S. Gutiérrez-Oliva, et al., Theor. Chem. Acc. 135, 37 (2006).

    Article  CAS  Google Scholar 

  53. M. K. Hazra and T. Chakraborty, J. Phys. Chem. A 109, 7621 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. A. Ya. Samuilov, F. B. Balabanova, Ya. D. Samuilov, and A. I. Konovalov, Russ. J. Gen. Chem. 85, 1808 (2015).

    Article  CAS  Google Scholar 

  55. R. Waterman, Organometallics 32, 7249 (2013).

    Article  CAS  Google Scholar 

  56. H. Bauer, M. Alonso, Ch. Farber, et al., Nat. Catal. 1, 40 (2018).

    Article  CAS  Google Scholar 

  57. S. Yadav, R. Dixit, K. Vanka, et al., Chem. Eur. J. 26, 1269 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Samuilov.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samuilov, A.Y., Alekbaev, D.R. & Samuilov, Y.D. Catalytic Metathesis of N-Methylformamide with Dimethyl Carbonate by Alcohol Associates. Russ. J. Phys. Chem. 93, 2365–2372 (2019). https://doi.org/10.1134/S0036024419120240

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419120240

Keywords:

Navigation