Skip to main content
Log in

Effect of Cyclic Hydrocarbon Vapors on the Structure of YBa2Cu3Oy

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The effect vapors of the simplest cyclic hydrocarbons have on the structure of YBa2Cu3Oy (123) with high (у = 6.96) and low (у = 6.3) oxygen concentrations at low temperatures (200–300°C) is studied. It is found that the hydration of 123 proceeds during low-temperature treatment in vapors of these hydrocarbons. The planar packing defects form in YBa2Cu3Oy in optimum amounts along with second-phase inclusions formation as a result of the reduction of copper. The formed centers of pinning can improve the critical properties of HTSC materials in strong magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. Maiorov, S. A. Baily, H. Zhou, et al., Nat. Mater. 8, 398 (2009).

    Article  CAS  Google Scholar 

  2. V. Selvamanickam, Y. Yao, Y. Chen, T. Shi, et al., Supercond. Sci. Technol. 25, 125013 (2012).

    Article  Google Scholar 

  3. H. K. Kupfer, A. A. Zhukov, R. Kresse, et al., Phys. Rev. B 52, 7689 (1995).

    Article  CAS  Google Scholar 

  4. M. R. Koblischka and M. Murakami, Supercond. Sci. Technol. 13, 738 (2000).

    Article  CAS  Google Scholar 

  5. I. B. Bobylev and N. A. Zyuzeva, Phys. Met. Metallogr. 112, 127 (2011).

    Article  Google Scholar 

  6. E. I. Kuznetsova, Yu. V. Blinova, S. V. Sudareva, I. B. Bobylev, E. P. Romanov, and T. P. Krinitsina, Phys. Met. Metallogr. 95, 65 (2003).

    Google Scholar 

  7. L. L. Makarshin, D. V. Andreev, and V. N. Parmon, Russ. Chem. Rev. 69, 279 (2000).

    Article  CAS  Google Scholar 

  8. W. Günther, R. Schollhorn, M. Epple, et al., Philos. Mag. A 79, 449 (1999).

  9. W. Günther, R. Schollhorn, H. Siegle, and Ch. Thomsen, Solid State Ionics 84, 23 (1996).

    Article  Google Scholar 

  10. Yu. M. Baikov, Phys. Solid State 42, 1026 (2000).

    Article  CAS  Google Scholar 

  11. S. R. Foltyn, L. Civale, J. L. MacManus-Driscoll, et al., Nat. Mater. 6, 631 (2007).

    Article  CAS  Google Scholar 

  12. I. B. Bobylev, Yu. S. Ponosov, and N. A. Zyuzeva, Mater. Chem. Phys. 167, 1 (2015).

    Article  CAS  Google Scholar 

  13. I. B. Bobylev and N. A. Zyuzeva, Phys. Solid State 55, 930 (2013).

    Article  CAS  Google Scholar 

  14. I. B. Bobylev, E. G. Gerasimov, N. A. Zyuzeva, and P. B. Terent’ev, Phys. Met. Metallogr. 118, 954 (2017).

    Article  CAS  Google Scholar 

  15. R. Zhao, M. J. Goringe, S. Myhra, and P. S. Turner, Philos. Mag. A 66, 491 (1992).

    Article  CAS  Google Scholar 

  16. I. B. Bobylev, E. G. Gerasimov, and N. A. Zyuzeva, Cryogenics 72, 36 (2015).

    Article  CAS  Google Scholar 

  17. N. S. Belousov, L. L. Makarshin, and V. N. Parmon, Sverkhprovodim.: Fiz., Khim., Tekh. 4, 1614 (1991).

    CAS  Google Scholar 

  18. L. S. Grigoryan, R. Kumar, S. K. Malik, et al., Phys. C (Amsterdam, Neth.) 205, 296 (1993).

  19. L. Fieser and M. Fieser, Organic Chemistry (D. C. Heath and Co., London, 1950), Vol. 2.

  20. M. Murakami, Supercond. Sci. Technol. 5, 185 (1992).

    Article  CAS  Google Scholar 

  21. W. Kraus and G. Nolze, J. Appl. Crystallogr. 9, 301 (1996).

    Article  Google Scholar 

  22. I. B. Bobylev, E. G. Gerasimov, and N. A. Zyuzeva, Phys. Met. Metallogr. 118, 738 (2017).

    Article  CAS  Google Scholar 

  23. E. V. Boikov, M. V. Vishnetskaya, A. N. Emel’yanov, et al., Khim. Fiz. 26 (8), 38 (2007).

    CAS  Google Scholar 

  24. I. B. Bobylev, N. A. Zyuzeva, and E. P. Romanov, Phys. Met. Metallogr. 106, 374 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Powder X-ray diffraction and magnetometric measurements were performed on equipment at the Testing Center of Nanotechnologies and Promising Materials, Institute of Metal Physics, Ural Branch, Russian Academy of Sciences. Chromatographic analysis was conducted at the Center for the Spectroscopy and Analysis of Organic Compounds, Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences.

The authors are grateful to A.V. Korolev and V.S. Gaviko for performing our magnetometric and powder X-ray diffraction measurements; and to M.G. Pervova for performing our chromatographic analysis.

Funding

This work was performed as part of a State Task from the Ministry of Higher Education and Science of the Russian Federation (“Pressure,” project no. AAAA-A18-118020190104-3 and “Spin,” project no. AAAA-A18-118020290104-2). It was partially supported by the Russian Academy of Sciences, Ural Branch, project no. 18-10-2-24.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Bobylev.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobylev, I.B., Zyuzeva, N.A. & Naumov, S.V. Effect of Cyclic Hydrocarbon Vapors on the Structure of YBa2Cu3Oy. Russ. J. Phys. Chem. 93, 2465–2471 (2019). https://doi.org/10.1134/S0036024419120045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419120045

Keywords:

Navigation