Skip to main content
Log in

Photocatalytic Hydrogen Evolution Performance and Photogenerated Charge Transfer Properties of p-Type Copper Sulfide

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Two kinds of 3D hierarchically nanostructured CuS samples were synthesized via hydrothermal method and studied as photocatalysts for H2 evolution. Field-emission scanning electron microscopy (EF‑SEM) and X-ray diffraction (XRD) were used to characterize the samples. The rate of H2 evolution over CS1 sample is 459.8 μmol g–1 h–1, which is 9.4 times higher than that over CS2. CuS shows excellent photocatalytic H2 evolution activity only with Na2S and Na2SO3 as holes sacrificial agent. The transient photovoltage (TPV) measurement was used to study the surface photoelectric properties of the samples. Based on the photovoltage response, the influence of the transfer characteristics of photogenerated charge carriers on photocatalytic activity is discussed. The results indicate that the charge separation efficiency of CS1 is higher than that of CS2. The photogenerated charge carriers life time of CS1 is longer than that of CS2; this is the main reason of the higher photocatalytic activity of CS1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Scheme 1.

Similar content being viewed by others

REFERENCES

  1. A. Fujishima and K. Honda, Nature (London, U. K.) 238, 37 (1972).

    Article  CAS  Google Scholar 

  2. X. B. Chen, S. H. Shen, L. J. Guo, and S. S. Mao, Chem. Rev. 110, 6503 (2010).

    Article  CAS  Google Scholar 

  3. I. Tsuji, H. Kato, H. Kobayashi, and A. Kudo, J. Am. Chem. Soc. 126, 13406 (2004).

    Article  CAS  Google Scholar 

  4. Q. X. Xiang, J. G. Yu, and M. Jaroniec, Chem. Soc. Rev. 41, 782 (2012).

    Article  CAS  Google Scholar 

  5. Q. X. Xiang, J. G. Yu, W. G. Wang, and M. Jaroniec, Chem. Commun. 47, 6906 (2011).

    Article  CAS  Google Scholar 

  6. J. G. Yu, B. Yang and B. Cheng, Nanoscale 4, 2670 (2012).

    Article  CAS  Google Scholar 

  7. Y. R. Wang, X. W. Zhang, P. Chen, H. T. Liao, and S. Q. Cheng, Electrochim. Acta 80, 264 (2012).

    Article  CAS  Google Scholar 

  8. L. Isac, A. Duta, A. Kriza, S. Monolache, and M. Nanu, Thin Solid Films 515, 5755 (2007).

    Article  CAS  Google Scholar 

  9. X. L. Yu, Y. Wang, H. L. Chan, and C. B. Cao, Microporous Mesoporous Mater. 118, 423 (2009).

    Article  CAS  Google Scholar 

  10. Z. G. Cheng, S. Z. Wang, Q. Wang, and B. Y. Geng, Cryst. Eng. Commun. 12, 144 (2010).

    Article  CAS  Google Scholar 

  11. J. Zhang, J. G. Yu, Y. M. Zhang, Q. Li, and J. R. Gong, Nano Lett. 11, 477 (2011).

    Google Scholar 

  12. L. J. Zhang, T. F. Jiang, S. Li, Y. C. Lu, L. L. Wang, X. Q. Zhang, D. J. Wang, and T. F. Xie, Dalton Trans. 42, 12998 (2013).

    Article  CAS  Google Scholar 

  13. Y. X. Li, G. Chen, Q. Wang, and X. Wang, Adv. Funct. Mater. 20, 3390 (2010).

    Article  CAS  Google Scholar 

  14. X. Wei, T. F. Xie, L. L. Peng, W. Fu, J. S. Chen, Q. Gao, G. Y. Hong, and D. J. Wang, J. Phys. Chem. C 115, 8637 (2011).

    Article  CAS  Google Scholar 

  15. J. Liu and D. F. Xue, J. Cryst. Growth 311, 500 (2009).

    Article  CAS  Google Scholar 

  16. S. K. Haram, A. R. Mahadeshwar, and S. G. Dixit, J. Phys. Chem. 100, 5868 (1996).

    Article  CAS  Google Scholar 

  17. H. Li, D. Wang, P. Wang, H. Fan, and T. Xie, Chem. Eur. J. 15, 12521 (2009).

    Article  CAS  Google Scholar 

  18. V. Duzhko, V. Yu. Timoshenko, F. Koch, and Th. Dittrich, Phys. Rev. B 64, 075 (2001).

  19. Q. L. Zhang, D. J. Wang, X. Wei, T. F. Xie, Z. H. Li, Y. H. Lin, and M. Yang, Thin Solid Films 491, 242 (2005).

    Article  CAS  Google Scholar 

  20. B. Mahrov, G. Boschloo, A. Hagfeldt, L. Dloczik, and Th. Dittrich, Appl. Phys. Lett. 84, 5455 (2004).

    Article  CAS  Google Scholar 

  21. I. Mora-sero, T. Dittrich, A. Belaidi, G. Crarcia-Belmonte, and J. Bisquert, J. Phys. Chem. B 109, 14932 (2005).

    Article  CAS  Google Scholar 

  22. W. Y. Su, Y. F. Zhang, Z. H. Li, L. Wu, X. X. Wang, J. Q. Li, and X. Z. Fu, Langmuir 24, 3422 (2008).

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful for the financial support to the National Science Youth Foundation of China (no. 51704123) and Provincial Science Youth Foundation of Jiangsu (no. BK20160424).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lijing Zhang, Jing Chen Photocatalytic Hydrogen Evolution Performance and Photogenerated Charge Transfer Properties of p-Type Copper Sulfide. Russ. J. Phys. Chem. 93, 2003–2008 (2019). https://doi.org/10.1134/S0036024419100339

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419100339

Keywords:

Navigation