Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1455–1459 | Cite as

Low-Temperature Synthesis of Zirconium Carbonitrode via the Reduction of Zirconia with Magnesium in the Presence of Sodium Carbonate in a Nitrogen Atmosphere

  • R. A. ShishkinEmail author
  • V. S. Kudyakova


Physicochemical transformations that occur during the low-temperature synthesis of zirconium carbonitride via the reduction of zirconia with magnesium in the presence of sodium carbonate in a nitrogen atmosphere are studied. Both reactions leading to the formation of Zr2CN and side processes occurring in the charge are studied by means of differential scanning calorimetry. Based in the results, it is concluded that zirconium carbonitride can be synthesized in the temperature range of 600–675°C. It is shown that using graphite does not lead to the formation of zirconium carbide or zirconium carbonitride in the investigated range of temperatures, while the use of urea has hardly any effect on the final product.


co-reduction mechanism zirconium carbonitride zirconium nitride sodium carbonate low-temperature synthesis 



This work was performed as part of the Federal Target Program “Research and Development in Priority Fields of Science and Engineering in Russia, 2014–2020” (agreement no. 14.578.21.0200, unique identifier PNIER RFMEFI57816X0200).


  1. 1.
    M. Jalaly, F. J. Gotor, and M. J. Sayagues, J. Solid State Chem. 267, 106 (2018).CrossRefGoogle Scholar
  2. 2.
    L. E. Toth, Transition Metal Carbides and Nitrides (Academic, London, 1971).Google Scholar
  3. 3.
    S. T. Oyama, The Chemistry of Transition Carbides and Nitrides (Hartnolls, Cornwall, 1996).CrossRefGoogle Scholar
  4. 4.
    S. E. Potts, C. J. Carmalt, C. S. Blackman, et al., Organometalics 28, 1838 (2009).CrossRefGoogle Scholar
  5. 5.
    C. J. Carmalt, A. C. Newport, S. A. O’Neil, et al., Inorg. Chem. 44, 615 (2005).CrossRefPubMedGoogle Scholar
  6. 6.
    T. Zhang, S. F. Zheng, and G. Wen, Mater. Lett. 132, 277 (2014).CrossRefGoogle Scholar
  7. 7.
    F. L. Huang, C. B. Cao, X. Xiang, et al., Diamond Relat. Mater. 13, 1757 (2004).CrossRefGoogle Scholar
  8. 8.
    D. Chen, Y. Huang, X. Hu, et al., Materials 11, 387 (2018).CrossRefPubMedCentralGoogle Scholar
  9. 9.
    G. Puyoo, F. Teyssandier, R. Pailler, et al., Carbon 122, 19 (2017).CrossRefGoogle Scholar
  10. 10.
    Sh. A. Faziev, M. S. Paizullakhanov, and Sh. R. Nurmatov, Heliotech. Mater. Sci. 46, 53 (2010).Google Scholar
  11. 11.
    J. Sun, B. Liang, Y. Huang, et al., Catal. Today 274, 123 (2016).CrossRefGoogle Scholar
  12. 12.
    M. Jalay, F. J. Gotor, and M. J. Sayagues, J. Alloys Compd. 763, 18 (2018).CrossRefGoogle Scholar
  13. 13.
    L. Wang, Y. Su, and Y. Q. Zhu, Int. J. Refract. Met. Hard Mater. 38, 134 (2013).CrossRefGoogle Scholar
  14. 14.
    S. A. Rasaki, B. Zhang, K. Anbalgam, et al., Prog. Solid State Chem. 50, 1 (2018).CrossRefGoogle Scholar
  15. 15.
    L. Wang, W. Xi, T. Mei, et al., J. Ceram. Soc. Jpn. 125, 789 (2017).CrossRefGoogle Scholar
  16. 16.
    J. Ma and Y. Du, J. Alloys Compd. 448, 215 (2008).CrossRefGoogle Scholar
  17. 17.
    J. Ma, M. Wu, Y. Du, et al., Mater. Sci. Eng. B 153, 96 (2008).CrossRefGoogle Scholar
  18. 18.
    J. Ma, M. Wu, Y. Du, et al., Mater. Lett. 63, 905 (2009).CrossRefGoogle Scholar
  19. 19.
    P. M. Schaber, J. Colson, S. Higgins, et al., Thermochim. Acta 424, 131 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Physics and Technology, Ural Federal UniversityYekaterinburgRussia

Personalised recommendations