Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1484–1488 | Cite as

Thermophysical Properties of p-Anisaldehyde–Methyl Acetate Mixtures

  • K. SathyaEmail author
  • R. Baskaran
  • K. Nagarajan
PHYSICAL CHEMISTRY OF SOLUTIONS
  • 7 Downloads

Abstract

Densities, viscosities and ultrasonic velocities of p-anisaldehyde – methyl acetate mixtures have been measured over the entire mole fractions at 308.15, 318.15, and 328.15 K and at 0.1 MPa. The excess molar volume, viscosity deviations and ultrasonic velocity deviations have been calculated. The new equations have been developed for excess molar volume, viscosity deviations, and ultrasonic velocity calculations using statistical software Design Expert. The excess thermo physical properties were fitted to Redlich–Kister model, Hind model, and Grunberg–Nissan model to obtain their coefficients and standard deviations using DATAFIT software.

Keywords:

viscosity ultrasonic velocity excess properties data fit RSM 

Notes

ACKNOWLEDGMENTS

The authors thank the Institute authorities for providing the necessary facilities to carry out the work.

REFERENCES

  1. 1.
    K. Saravanakumar, T. G. Lavanya, R. Baskaran, and T. R. Kubendran, Russ. J. Phys. Chem. A 86, 647 (2012).Google Scholar
  2. 2.
    R. Baskaran and T. R. Kubendran, J. Curr. Sci. 10, 499 (2007).Google Scholar
  3. 3.
    D. D. Perrin and W. L. F Armerego, Purification of Laboratory Chemistry, 3rd ed. (Pergamon, Oxford, 1988).Google Scholar
  4. 4.
    J. A. Riddick, W. B. Bunger, and T. K. Sakano, Organic Solvents, Physical Properties and Methods of Purification, 4th ed. (Wiley-Interscience, New York, 1986).Google Scholar
  5. 5.
    S. K. Bindhani, G. K. Roy, Y. K. Mohanty, and T. R. Kubendran, Russ. J. Phys. Chem. A 88, 1255 (2014).CrossRefGoogle Scholar
  6. 6.
    M. García-Mardones, S. Martín, I. Gascón, and C. Lafuente, J. Chem. Eng. Data 59, 1564 (2014).CrossRefGoogle Scholar
  7. 7.
    E. J. González, B. González, and E. A. Macedo, J. Chem. Eng. Data 58, 1440 (2013)CrossRefGoogle Scholar
  8. 8.
    O. Redlich and A. T. Kister, Ind. Eng. Chem. 40, 345 (1948).CrossRefGoogle Scholar
  9. 9.
    R. K. Hind, E. Mclaughlin, and R. Ubbelohde, Trans. Faraday Soc. 56, 328 (1960).CrossRefGoogle Scholar
  10. 10.
    L. Grunberg and A. Nissan, Nature (London, U. K.) 164, 799 (1949).CrossRefGoogle Scholar
  11. 11.
    S. L. Oswal and N. B. Patel, J. Chem. Eng. Data 40, 845 (1995).CrossRefGoogle Scholar
  12. 12.
    M. Kondaiah and D. Krishna Rao, Int. J. Res. Pure Appl. Phys. 3 (4), 43 (2013).Google Scholar
  13. 13.
    N. Satyanarayana, B. Sathyanarayana, and J. Savitha Tangeda, J. Chem. Eng. Data 52, 405 (2007).CrossRefGoogle Scholar
  14. 14.
    R. Baskaran and T. R. Kubendran, J. Chem. Eng. Data 53, 1956 (2008).CrossRefGoogle Scholar
  15. 15.
    S. K. Bindhani, G. K. Roy, Y. K. Mohanty, and T. R. Kubendran, Russ. J. Phys. Chem. A 91, 1255 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Biotechnology, Rajalakshmi Engineering CollegeChennaiIndia
  2. 2.Department of Chemical Engineering, St. Joseph’s College of EngineeringChennaiIndia
  3. 3.Department of Chemical Engineering, Rajalakshmi Engineering CollegeChennaiIndia

Personalised recommendations