Behavior of the Environment during Ion Diffusion in Liquids

Abstract

The coefficient of diffusion of an ion in a liquid is decomposed at a low concentration of ions according to the sum of collective and structural diffusion (the former is the diffusion of an ion and the solvation shell as a whole; the latter is the diffusion of an ion due to exchanges of atoms inside the solvation shell, which alter its configuration). It is established that the range of decomposition applicability corresponds to ions interacting strongly with the solvation shell due to their small size. The results are verified by comparing molecular dynamics calculations of the diffusion of ions in water and liquid xenon. The results are shown to be in good agreement with the available experimental data.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    S. V. Pavlov and S. A. Kislenko, Phys. Chem. Chem. Phys. 18, 30830 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    V. S. Smirnov and S. A. Kislenko, Chem. Phys. Chem. 19, 75 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    O. R. Rakhmanova and A. E. Galashev, Russ. J. Phys. Chem. A 91, 921 (2017).

    Article  CAS  Google Scholar 

  4. 4

    A. F. Shestakov, A. V. Yudina, G. Z. Tulibaeva, Yu. M. Shul’ga, A. A. Ignatova, and O. V. Yarmolenko, Russ. J. Phys. Chem. A 91, 1444 (2017).

    Article  CAS  Google Scholar 

  5. 5

    F. Chen, R. Kerr, and M. Forsyth, J. Chem. Phys. 148, 193813 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. 6

    G. Yellen, Nat. Rev. Neurosci. 419, 35 (2002).

    CAS  Google Scholar 

  7. 7

    M. S. Apfel’baum, Surf. Eng. Appl. Electrochem. 45, 102 (2009).

    Article  Google Scholar 

  8. 8

    M. S. Apfelbaum and A. N. Doludenko, J. Phys.: Conf. Ser. 774, 012184 (2016).

    Google Scholar 

  9. 9

    A. V. Lankin and M. A. Orekhov, J. Phys.: Conf. Ser. 946, 012123 (2018).

    Google Scholar 

  10. 10

    V. I. Borovkov, J. Phys. Chem. A 110, 13366 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    O. Hilt, F. Schmidt, and A. Khrapak, IEEE Trans. Dielectr. Electr. Insul. 1, 648 (1994).

    Article  CAS  Google Scholar 

  12. 12

    A. Khrapak and W. Schmidt, Int. J. Mass. Spectrom. 277, 236 (2008).

    Article  CAS  Google Scholar 

  13. 13

    A. V. Lankin, G. E. Norman, and M. A. Orekhov, Russ. J. Phys. Chem. A 90, 962 (2016).

    Article  CAS  Google Scholar 

  14. 14

    J. B. Hubbard and L. Onsager, J. Chem. Phys. 67, 4850 (1977).

    Article  CAS  Google Scholar 

  15. 15

    R. Zwanzig, J. Chem. Phys. 38, 1603 (1963).

    Article  CAS  Google Scholar 

  16. 16

    M. Orekhov, Phys. Chem. Chem. Phys. 19, 32398 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    K. B. Moller, R. Rey, M. Masia, and J. T. Hynes, J. Chem. Phys. 122, 114508 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    O. Borodin, G. D. Smith, and W. Henderson, J. Phys. Chem. B 110, 16879 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. 19

    S. V. Shevkunov, Russ. J. Phys. Chem. A 91, 2124 (2017).

    Article  CAS  Google Scholar 

  20. 20

    S. V. Shevkunov, Russ. J. Phys. Chem. A 91, 336 (2017).

    Article  CAS  Google Scholar 

  21. 21

    D. Nelson, M. Benhenni, O. Eichwald, and M. Yousfi, J. Phys. D: Appl. Phys. 34, 3247 (2001).

    Article  CAS  Google Scholar 

  22. 22

    I. S. Ivanishko and V. I. Borovkov, J. Phys. Chem. B 114, 9812 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. 23

    G. K. Horton and J. W. Leech, Proc. Phys. Soc. 82, 816 (1963).

    Article  CAS  Google Scholar 

  24. 24

    A. Putnis and C. V. Putnis, Phys. Chem. Chem. Phys. 16, 7772 (2014).

    Article  PubMed  Google Scholar 

  25. 25

    R. W. Hockney and J. V. Eastwood, Computer Simulation Using Particles (IOP, New York, 1989).

    Google Scholar 

  26. 26

    S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  27. 27

    V. Ya. Rudyak, G. V. Kharlamov, and A. A. Belkin, Tech. Phys. Lett. 26, 553 (2000).

    Article  CAS  Google Scholar 

  28. 28

    L. Yuan-Hui and S. Gregory, Geochim. Cosmochim. Acta 38, 703 (1974).

    Article  Google Scholar 

  29. 29

    L. Pejov, D. Spangberg, and K. Hermansson, J. Chem. Phys. 133, 174513 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    M. Chaudhari, M. Soniat, and S. Rempe, J. Phys. Chem. B 119, 8746 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    S. Ramos, G. Neilson, and A. Barnes, J. Chem. Phys. 118, 5542 (2003).

    Article  CAS  Google Scholar 

  32. 32

    A. Matsuda and H. Mori, J. Solution. Chem. 43, 1669 (2014).

    Article  CAS  Google Scholar 

  33. 33

    A. Khrapak, P. Tegeder, E. Illenberger, et al., Chem. Phys. Lett. 310, 557 (1999).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 18-19-00734. Our calculations were performed on the MVS-10p computational cluster and at the supercomputer center of the Russian Academy of Sciences’ Joint Institute for High Temperatures.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Orekhov.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lankin, A.V., Norman, G.E. & Orekhov, M.A. Behavior of the Environment during Ion Diffusion in Liquids. Russ. J. Phys. Chem. 93, 1421–1427 (2019). https://doi.org/10.1134/S003602441908017X

Download citation

Keywords:

  • ion solvation
  • diffusion
  • molecular dynamics