Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 8, pp 1421–1427 | Cite as

Behavior of the Environment during Ion Diffusion in Liquids

  • A. V. Lankin
  • G. E. Norman
  • M. A. OrekhovEmail author
CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • 46 Downloads

Abstract

The coefficient of diffusion of an ion in a liquid is decomposed at a low concentration of ions according to the sum of collective and structural diffusion (the former is the diffusion of an ion and the solvation shell as a whole; the latter is the diffusion of an ion due to exchanges of atoms inside the solvation shell, which alter its configuration). It is established that the range of decomposition applicability corresponds to ions interacting strongly with the solvation shell due to their small size. The results are verified by comparing molecular dynamics calculations of the diffusion of ions in water and liquid xenon. The results are shown to be in good agreement with the available experimental data.

Keywords:

ion solvation diffusion molecular dynamics 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, grant no. 18-19-00734. Our calculations were performed on the MVS-10p computational cluster and at the supercomputer center of the Russian Academy of Sciences’ Joint Institute for High Temperatures.

REFERENCES

  1. 1.
    S. V. Pavlov and S. A. Kislenko, Phys. Chem. Chem. Phys. 18, 30830 (2016).CrossRefPubMedGoogle Scholar
  2. 2.
    V. S. Smirnov and S. A. Kislenko, Chem. Phys. Chem. 19, 75 (2017).CrossRefPubMedGoogle Scholar
  3. 3.
    O. R. Rakhmanova and A. E. Galashev, Russ. J. Phys. Chem. A 91, 921 (2017).CrossRefGoogle Scholar
  4. 4.
    A. F. Shestakov, A. V. Yudina, G. Z. Tulibaeva, Yu. M. Shul’ga, A. A. Ignatova, and O. V. Yarmolenko, Russ. J. Phys. Chem. A 91, 1444 (2017).CrossRefGoogle Scholar
  5. 5.
    F. Chen, R. Kerr, and M. Forsyth, J. Chem. Phys. 148, 193813 (2018).CrossRefPubMedGoogle Scholar
  6. 6.
    G. Yellen, Nat. Rev. Neurosci. 419, 35 (2002).Google Scholar
  7. 7.
    M. S. Apfel’baum, Surf. Eng. Appl. Electrochem. 45, 102 (2009).CrossRefGoogle Scholar
  8. 8.
    M. S. Apfelbaum and A. N. Doludenko, J. Phys.: Conf. Ser. 774, 012184 (2016).Google Scholar
  9. 9.
    A. V. Lankin and M. A. Orekhov, J. Phys.: Conf. Ser. 946, 012123 (2018).Google Scholar
  10. 10.
    V. I. Borovkov, J. Phys. Chem. A 110, 13366 (2006).CrossRefPubMedGoogle Scholar
  11. 11.
    O. Hilt, F. Schmidt, and A. Khrapak, IEEE Trans. Dielectr. Electr. Insul. 1, 648 (1994).CrossRefGoogle Scholar
  12. 12.
    A. Khrapak and W. Schmidt, Int. J. Mass. Spectrom. 277, 236 (2008).CrossRefGoogle Scholar
  13. 13.
    A. V. Lankin, G. E. Norman, and M. A. Orekhov, Russ. J. Phys. Chem. A 90, 962 (2016).CrossRefGoogle Scholar
  14. 14.
    J. B. Hubbard and L. Onsager, J. Chem. Phys. 67, 4850 (1977).CrossRefGoogle Scholar
  15. 15.
    R. Zwanzig, J. Chem. Phys. 38, 1603 (1963).CrossRefGoogle Scholar
  16. 16.
    M. Orekhov, Phys. Chem. Chem. Phys. 19, 32398 (2017).CrossRefPubMedGoogle Scholar
  17. 17.
    K. B. Moller, R. Rey, M. Masia, and J. T. Hynes, J. Chem. Phys. 122, 114508 (2005).CrossRefPubMedGoogle Scholar
  18. 18.
    O. Borodin, G. D. Smith, and W. Henderson, J. Phys. Chem. B 110, 16879 (2006).CrossRefPubMedGoogle Scholar
  19. 19.
    S. V. Shevkunov, Russ. J. Phys. Chem. A 91, 2124 (2017).CrossRefGoogle Scholar
  20. 20.
    S. V. Shevkunov, Russ. J. Phys. Chem. A 91, 336 (2017).CrossRefGoogle Scholar
  21. 21.
    D. Nelson, M. Benhenni, O. Eichwald, and M. Yousfi, J. Phys. D: Appl. Phys. 34, 3247 (2001).CrossRefGoogle Scholar
  22. 22.
    I. S. Ivanishko and V. I. Borovkov, J. Phys. Chem. B 114, 9812 (2010).CrossRefPubMedGoogle Scholar
  23. 23.
    G. K. Horton and J. W. Leech, Proc. Phys. Soc. 82, 816 (1963).CrossRefGoogle Scholar
  24. 24.
    A. Putnis and C. V. Putnis, Phys. Chem. Chem. Phys. 16, 7772 (2014).CrossRefPubMedGoogle Scholar
  25. 25.
    R. W. Hockney and J. V. Eastwood, Computer Simulation Using Particles (IOP, New York, 1989).Google Scholar
  26. 26.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
  27. 27.
    V. Ya. Rudyak, G. V. Kharlamov, and A. A. Belkin, Tech. Phys. Lett. 26, 553 (2000).CrossRefGoogle Scholar
  28. 28.
    L. Yuan-Hui and S. Gregory, Geochim. Cosmochim. Acta 38, 703 (1974).CrossRefGoogle Scholar
  29. 29.
    L. Pejov, D. Spangberg, and K. Hermansson, J. Chem. Phys. 133, 174513 (2010).CrossRefPubMedGoogle Scholar
  30. 30.
    M. Chaudhari, M. Soniat, and S. Rempe, J. Phys. Chem. B 119, 8746 (2015).CrossRefPubMedGoogle Scholar
  31. 31.
    S. Ramos, G. Neilson, and A. Barnes, J. Chem. Phys. 118, 5542 (2003).CrossRefGoogle Scholar
  32. 32.
    A. Matsuda and H. Mori, J. Solution. Chem. 43, 1669 (2014).CrossRefGoogle Scholar
  33. 33.
    A. Khrapak, P. Tegeder, E. Illenberger, et al., Chem. Phys. Lett. 310, 557 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Lankin
    • 1
    • 2
  • G. E. Norman
    • 3
    • 1
  • M. A. Orekhov
    • 1
    • 2
    • 3
    Email author
  1. 1.Joint Institute of High Temperatures, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyMoscowRussia
  3. 3.Higher School of EconomicsMoscowRussia

Personalised recommendations