Russian Journal of Physical Chemistry A

, Volume 93, Issue 6, pp 1155–1164 | Cite as

Effect of the Concentration of an Organic Modifier in a Water–Ethanol Mobile Phase on the Retention and Thermodynamics of Adsorption of Enantiomers of Hydroxy Acids and Their Derivatives on a Chiral Adsorbent with a Grafted Antibiotic Eremomycin

  • O. Sh. GogolishviliEmail author
  • E. N. ReshetovaEmail author


Patterns of the retention and the thermodynamics of adsorption of enantiomers of aromatic hydroxy acids and their derivatives on a chiral stationary phase with a grafted macrocyclic antibiotic eremomycin from water–ethanol eluents under the conditions of linear liquid chromatography are studied. Dependences of the characteristics of retention, separation, and thermodynamic quantities on the concentration of the organic modifier in the eluent are found. The relationship between the structure of the investigated adsorbates and the retention and selectivity of the separation of their enantiomers is shown. It is demonstrated how extrathermodynamic correlations can be used to obtain information on the mechanism of adsorption. The difference between the mechanisms of adsorption of the enantiomers of hydroxy acids and their esters, and by hydroxy acids with a reverse order of elution of the (S)- and (R)-enantiomers, is found.


eremomycin chiral chromatography enantiomers hydroxy acids 



This work was supported by the Russian Foundation for Basic Research, project code no. 18-03-00053-A.


  1. 1.
    Z. D. Draelos, Dermatol. Ther. 13, 154 (2000).CrossRefGoogle Scholar
  2. 2.
    C. Lamberth, A. Jeanguenat, F. Cederbaum, et al., Bioorg. Med. Chem. 16, 1531 (2008).CrossRefGoogle Scholar
  3. 3.
    Z. Zheng, B. Sheng, C. Gao, et al., Sci. Rep. 3, 3401 (2013).CrossRefGoogle Scholar
  4. 4.
    G. M. Coppola and H. F. Schuster, α-Hydroxy Acids in Enantioselective Synthesis (Wiley-VCH, Weinheim, 1997), p. 494.Google Scholar
  5. 5.
    E. Pişkin, J. Biomater. Sci. Polym. Ed. 6, 775 (1995).CrossRefGoogle Scholar
  6. 6.
    K. Kacprzak, N. Maier, and W. Lindner, J. Sep. Sci. 33, 2590 (2010).CrossRefGoogle Scholar
  7. 7.
    W. J. Choi, K. Y. Lee, S. H. Kang, et al., Sep. Purif. Technol. 53, 178 (2007).CrossRefGoogle Scholar
  8. 8.
    G. D. Yadav and P. Sivakumar, Biochem. Eng. J. 19, 101 (2004).CrossRefGoogle Scholar
  9. 9.
    V. Sládková, O. Dammer, G. Sedmak, et al., Crystals 7, 13 (2017).CrossRefGoogle Scholar
  10. 10.
    D. W. Armstrong, Y. Tang, S. Chen, et al., Anal. Chem. 66, 1473 (1994).CrossRefGoogle Scholar
  11. 11.
    A. Berthod, B. L. He, and T. E. Beesley, J. Chromatogr. A 1060, 205 (2004).Google Scholar
  12. 12.
    M. A. Kuznetsov, P. N. Nesterenko, G. G. Vasiyarov, and S. M. Staroverov, J. Anal. Chem. 63, 57 (2008).CrossRefGoogle Scholar
  13. 13.
    E. N. Shapovalova, I. A. Fedorova, A. A. Priporova, et al., Anal. Kontrol’ 20, 168 (2016).Google Scholar
  14. 14.
    F. Hui, K. H. Ekborg-Ott, and D. W. Armstrong, J. Chromatogr. A 906, 91 (2001).Google Scholar
  15. 15.
    S. M. Staroverov, M. A. Kuznetsov, P. N. Nesterenko, et al., J. Chromatogr. A 1108, 263 (2006).CrossRefGoogle Scholar
  16. 16.
    I. A. Fedorova, E. N. Shapovalova, S. M. Staroverov, and O. A. Shpigun, Sorpt. Chromatogr. Processes 15, 769 (2015).Google Scholar
  17. 17.
    E. N. Reshetova and L. D. Asnin, Russ. J. Phys. Chem. A 83, 547 (2009).CrossRefGoogle Scholar
  18. 18.
    E. N. Reshetova and L. D. Asnin, Russ. J. Phys. Chem. A 85, 1434 (2011).CrossRefGoogle Scholar
  19. 19.
    E. Reshetova, J. Liq. Chromatogr. Relat. Technol. 39, 145 (2016).CrossRefGoogle Scholar
  20. 20.
    A. S. Blinov and E. N. Reshetova, Russ. J. Phys. Chem. A 88, 1778 (2014).CrossRefGoogle Scholar
  21. 21.
    I. Ali, K. Kumerer, and H. Y. Aboul-Enein, Chromatographia 63, 295 (2006).CrossRefGoogle Scholar
  22. 22.
    Y. K. Nikitina, I. Ali, and L. D. Asnin, J. Chromatogr. A 1363, 71 (2014).Google Scholar
  23. 23.
    R. Aneja, P. M. Luthra, and S. Ahuja, Chirality 22, 479 (2010).Google Scholar
  24. 24.
    A. Berthod, Y. Liu, C. Bagwill, and D. W. Armstrong, J. Chromatogr. A 731, 123 (1996).Google Scholar
  25. 25.
    P. Jandera, M. Škavrada, K. Klemmová, et al., J. Chromatogr. A 917, 123 (2001).CrossRefGoogle Scholar
  26. 26.
    T. E. Beesley and J.-T. Lee, J. Liq. Chromatogr. Relat. Technol. 32, 1733 (2009).CrossRefGoogle Scholar
  27. 27.
    T. L. Chester and J. W. Coym, J. Chromatogr. A 1003, 101 (2003).Google Scholar
  28. 28.
    T. Fornstedt, J. Chromatogr. A 1217, 792 (2010).Google Scholar
  29. 29.
    L. D. Asnin, K. Kaczmarski, and E. N. Reshetova, Russ. Chem. Bull. 58, 1731 (2009).CrossRefGoogle Scholar
  30. 30.
    L. Asnin, K. Sharma, and S. W. Park, J. Sep. Sci. 34, 3136 (2011).CrossRefGoogle Scholar
  31. 31.
    B. R. Saifutdinov and A. A. Pimerzin, Russ. J. Phys. Chem. A 87, 529 (2013).CrossRefGoogle Scholar
  32. 32.
    B. R. Saifutdinov, S. V. Kurbatova, and N. S. Emel’yanova, Russ. J. Phys. Chem. A 84, 673 (2010).CrossRefGoogle Scholar
  33. 33.
    T. Rojkovičová, J. Lehotay, D. Meričko, et al., J. Liq. Chromatogr. Relat. Technol. 27, 2477 (2004).CrossRefGoogle Scholar
  34. 34.
    T. Rojkovičová, J. Lehotay, D. W. Armstrong, and J. Čižmárik, J. Liq. Chromatogr. Relat. Technol. 27, 3213 (2004).CrossRefGoogle Scholar
  35. 35.
    A. Vailaya and Cs. Horvath, J. Phys. Chem. B 102, 701 (1998).CrossRefGoogle Scholar
  36. 36.
    R. R. Krug, W. G. Hunter, and R. A. Grieger, J. Phys. Chem. 80, 2335 (1976).CrossRefGoogle Scholar
  37. 37.
    K. Miyabe, Anal. Sci. 25, 219 (2009).CrossRefGoogle Scholar
  38. 38.
    R. R. Krug, W. G. Hunter, and R. A. Grieger, J. Phys. Chem. 80, 2341 (1976).CrossRefGoogle Scholar
  39. 39.
    R. Ranatunga, M. F. Vitha, and P. W. Carr, J. Chromatogr. A 946, 47 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Technical Chemistry, Ural Branch, Russian Academy of SciencesPermRussia

Personalised recommendations