Skip to main content
Log in

Doping Graphene Oxide Aerogel with Nitrogen during Reduction with Hydrazine and Low Temperature Annealing in Air

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The presence of nitrogen is revealed via elemental analysis and X-ray photoelectron spectroscopy in graphene oxide aerogel annealed in air. It is estimated that a substantial amount of nitrogen emerges in samples at an annealing temperature of 125°С. The concentration of nitrogen in the aerogel is greatest (0.17 wt %) at an annealing temperature of 225°С. The concentration of nitrogen reaches 3 wt % upon the reduction of aerogel in hydrazine vapor. N1s spectrum of aerogel reduced with hydrazine is approximated by three peaks (399.5, 401.3, and 403.6 eV). Nitrogen is present in only the two states that correspond to the N1s photoelectron peaks characterized by bond energies of 399.7 and 401.2 eV, respectively, in air-annealed aerogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. H. Lee, H. W. Kim, J. O. Hwang, et al., Angew. Chem. 122, 10282 (2010).

    Article  Google Scholar 

  2. Y. Xue, J. Liu, H. Chen, et al., Angew. Chem., Int. Ed. Engl. 51, 12124 (2012).

    Article  CAS  Google Scholar 

  3. T. Kondo, S. Casolo, T. Suzuki, et al., Phys. Rev. B 86, 035436 (2012).

    Article  CAS  Google Scholar 

  4. R. Wang, C. Xu, J. Sun, et al., ACS Appl. Mater. Interfaces 6, 3427 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Y. Qin, J. Yuan, J. Li, et al., Adv. Mater. 27, 5171 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. P. Iamprasertkun, A. Krittayavathananon, M. Sawangphruk, et al., Carbon 102, 455 (2016).

    Article  CAS  Google Scholar 

  7. R. L. Liu, D. Q. Wu, X. L. Feng, et al., Angew. Chem., Int. Ed. Engl. 49, 2565 (2010).

    Article  CAS  Google Scholar 

  8. S. Y. Wang, D. S. Yu, L. M. Dai, et al., ACS Nano 5, 6202 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Y. Li, Y. Zhao, H. Cheng, et al., J. Am. Chem. Soc. 134, 15 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. S. Wang, E. Iyyamperumal, A. Roy, et al., Angew. Chem., Int. Ed. Engl. 50, 11756 (2011).

    Article  CAS  Google Scholar 

  11. Z. S. Wu, S. Yang, Y. Sun, et al., J. Am. Chem. Soc. 134, 9082 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. S. A. Baskakov, Yu. V. Baskakova, L. N. Blinova, E. N. Kabachkov, N. N. Dremova, and Yu. M. Shulga, High Energy Chem. 52, 355 (2018).

    Article  CAS  Google Scholar 

  13. W. S. Hummers and R. E. Offman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  14. S. Yang, L. Zhi, K. Tang, et al., Adv. Funct. Mater. 22, 3634 (2012).

    Article  CAS  Google Scholar 

  15. H. Hu, Z. Zhao, W. Wan, et al., Adv. Mater. 25, 2219 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. H. M. Jeong, J. W. Lee, W. H. Shin, et al., Nano Lett. 11, 2472 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Z. Sui, C. Wang, K. Shu, et al., J. Mater. Chem. A 3, 10403 (2015).

    Article  CAS  Google Scholar 

  18. H. Wang, Z. Wu, F. Meng, et al., Chem. Sus. Chem. 6, 56 (2013).

    Article  CAS  Google Scholar 

  19. D. Yang, A. Velamakanni, G. Bozoklub, et al., Carbon 47, 145 (2009).

    Article  CAS  Google Scholar 

  20. S. Stankovich, D. A. Dikin, R. D. Piner, et al., Carbon 45, 1558 (2007).

    Article  CAS  Google Scholar 

  21. S. Park, J. An, J. R. Potts, et al., Carbon 49, 3019 (2011).

    Article  CAS  Google Scholar 

  22. Y. M. Shulga, S. A. Baskakov, E. I. Knerelman, et al., RSC Adv. 4, 587 (2014).

    Article  CAS  Google Scholar 

  23. D. N. Voylov, A. L. Agapov, Y. M. Shulga, et al., Carbon 69, 563 (2014).

    Article  CAS  Google Scholar 

  24. A. L. M. Reddy, A. Srivastava, S. R. Gowda, et al., ACS Nano 4, 6337 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. X. Wang, X. Q. Cao, L. Bourgeois, et al., Adv. Funct. Mater. 22, 2682 (2012).

    Article  CAS  Google Scholar 

  26. S.-A. Wohlgemuth, R. J. White, M.-G. Willinger, et al., Green Chem. 14, 1515 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 17-43-500093 r_а).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. M. Shul’ga or E. N. Kabachkov.

Additional information

Translated by P. Vlasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shul’ga, Y.M., Kabachkov, E.N., Baskakov, S.A. et al. Doping Graphene Oxide Aerogel with Nitrogen during Reduction with Hydrazine and Low Temperature Annealing in Air. Russ. J. Phys. Chem. 93, 296–300 (2019). https://doi.org/10.1134/S0036024419010278

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419010278

Keywords:

Navigation