Russian Journal of Physical Chemistry A

, Volume 93, Issue 1, pp 168–172 | Cite as

Unusual Behavior of Fluorescein under Conditions of Electrochemical Oxidation in an Aqueous Phosphate Buffer Solution

  • O. K. LebedevaEmail author
  • V. S. Snytko
  • I. I. Kuznetsova
  • D. Yu. Kultin
  • A. N. Zakharov
  • L. M. Kustov


The electrochemical and catalytic oxidation of fluorescein (Fl) by hydrogen peroxide in a phosphate buffer solution is conducted. It is shown that Fl is not adsorbed within the investigated range of potential. A heterogeneous mechanism of oxidation is ruled out, but the generation of the oxidizer is due to an electrochemical process associated with the in situ formation of active intermediate particles. It is established there is a hydrogen peroxide concentration limit below which Fl is not oxidized. The dependence of the rate of the homogeneous oxidation of Fl by hydrogen peroxide on the state of the surface of a platinum catalyst is revealed.


fluorescein phosphate buffer solution electrooxidation catalytic oxidation hydrogen peroxide 



This work was supported by the Russian Science Foundation, project no. 14-50-00126.


  1. 1.
    K. V. Yablotskii and T. N. Shekhovtsova, J. Anal. Chem. 65, 676 (2010).Google Scholar
  2. 2.
    S. Pirillo, F. S. G. Einschlag, M. L. Ferreira, et al., J. Mol. Catal., B 66, 63 (2010).CrossRefGoogle Scholar
  3. 3.
    N. L. Queiroz, J. A. M. Nascimento, M. L. Nascimento, et al., Electroanalysis 29, 489 (2017).CrossRefGoogle Scholar
  4. 4.
    R. Sjoback, J. Nygren, and M. Kubista, Spectrochim. Acta, A 51, L7 (1995).CrossRefGoogle Scholar
  5. 5.
    B. Wang, Y. Ma, S. Wang, L. Zhang, et al., J. Mater. Chem. C, 4423 (2014).Google Scholar
  6. 6.
    R. Compton, D. Page, and G. Sealy, J. Electroanal. Chem. 163, 65 (1984).CrossRefGoogle Scholar
  7. 7.
    I. Sirés, E. Brillas, M. A. Oturan, M. A. Rodrigo, et al., Environ. Sci. Pollut. Res. Int. 21, 8336 (2014).CrossRefGoogle Scholar
  8. 8.
    P. Cañizares, C. Sáez, A. Sánchez-Carretero, and M. Rodrigo, J. Appl. Electrochem. 39, 2143 (2009).CrossRefGoogle Scholar
  9. 9.
    R. Jaimes, J. Vazquez-Arenas, I. González, and M. Galván, Electrochim. Acta 229, 345 (2017).CrossRefGoogle Scholar
  10. 10.
    C. Loures, M. Alcantara, H. Filho, et al., Int. Rev. Chem. Eng. 5, 102 (2013).Google Scholar
  11. 11.
    D. T. Sawyer and J. L. Roberts, Acc. Chem. Res. 21, 469 (1988).CrossRefGoogle Scholar
  12. 12.
    Q. Li, G. Wu, D. A. Cullen, K. L. More, et al., ACS Catal. 4, 3193 (2014).CrossRefGoogle Scholar
  13. 13.
    E. A. Kuznetsova, RF Patent No. 2301790(13) (2007).Google Scholar
  14. 14.
    R. Bisby, R. Brooke, and S. Navaratnam, Food Chem. 108, 1002 (2008).CrossRefGoogle Scholar
  15. 15.
    Practical Guide on Electrochemistry, Ed. by B. B. Damaskin (Vysshaya Shkola, Moscow, 1991), p. 198 [in Russian].Google Scholar
  16. 16.
    P. Daubinger, J. Kieninger, T. Unmussig, and G. A. Urbanab, Phys. Chem. Chem. Phys. 16, 8392 (2014).CrossRefGoogle Scholar
  17. 17.
    R. Gisbert and M. Koper, Electrochim. Acta 55, 7961 (2010).CrossRefGoogle Scholar
  18. 18.
    The Oxidation States of the Elements and Their Potentials and Aqueous Solutions, Ed. by W. M. Latimer (New York, 1952), p. 47.Google Scholar
  19. 19.
    G. A. Bogdanovsky, G. L. Vidovich, D. Yu. Kultin, et al., Appl. Catal. A: Gen. 232, 137 (2002).CrossRefGoogle Scholar
  20. 20.
    C. Martínez-Huitle and L. Andrade, Quim. Nova 34, 850 (2011).CrossRefGoogle Scholar
  21. 21.
    C. Miller and R. Valentine, Water Res. 33, 2805 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. K. Lebedeva
    • 1
    Email author
  • V. S. Snytko
    • 1
  • I. I. Kuznetsova
    • 1
  • D. Yu. Kultin
    • 1
  • A. N. Zakharov
    • 1
  • L. M. Kustov
    • 1
    • 2
  1. 1.Department of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations