Skip to main content
Log in

Molecular Interactions in Binary Mixtures of 2-Cholroaniline and Monosubstituted Benzene Derivatives at Various Temperatures

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The densities (ρ), speed of sound (u) values, and viscosities (η) were reported for binary mixtures of 2-chloroaniline with benzene derivatives (chlorobenzene, bromobenzene and nitrobenzene) over the entire composition range at T = 303.15–318.15 K and at atmospheric pressure 0.1 MPa. The excess properties, such as excess molar volume, excess isentropic compressibility and deviation in viscosity were calculated from experimental data. The excess properties were correlated by the Redlich–Kister equation. The partial molar volumes, partial molar isentropic compressibilities, excess partial molar volumes and excess partial molar isentropic compressibilities were calculated for all the binary systems throughout the composition range and also at infinity dilutions. The VE results are analyzed in the light of Prigogine–Flory–Patterson theory. Analysis of each of the three contributions viz. interactional, free volume and P* effect to VE showed that interactional and P* contributions are positive for all systems, the free volume effect is negative for all the mixtures. The variations of these parameters with composition and temperature were discussed in terms of intermolecular interactions prevailing in these mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. M. Kinart, W. J. Kinart, D. Checinska-Majak, and A. Cwiklinska, J. Mol. Liq. 109, 19 (2004).

    Article  CAS  Google Scholar 

  2. M. Gowrisankar, A. Venkatesulu, T. Srinivasa Krishna, and K. Ravindhranath, J. Chem. Thermodyn. 107, 104 (2017).

    Article  CAS  Google Scholar 

  3. M. Chandra Sekhar, M. Gowri Sankar, and A. Venkatesulu, J. Mol. Liq. 209, 428 (2015).

    Article  CAS  Google Scholar 

  4. R. Balaji, M. Gowri Sankar, A. Venkatesulu, and M. Chandra Shekar, J. Mol. Liq. 230, 36 (2017).

    Article  CAS  Google Scholar 

  5. P. Venkateswara Rao, M. Gowrisankar, L. Venkatramana, T. Srinivasa Krishna, and K. Ravindhranath, J. Chem. Thermodyn. 101, 92 (2016).

    Article  CAS  Google Scholar 

  6. Kirk–Othmer Encyclopedia of Chemical Technology, 5th ed. (Wiley Interscience, New York, 2004), p. 793.

  7. Kirk–Othmer Encyclopedia of Chemical Technology, 5th ed. (Wiley Interscience, New York, 2004), p. 224.

  8. M. V. Rathnam and R. K. Singh, Indian J. Chem. Tech. 11, 526 (2004).

    CAS  Google Scholar 

  9. L. Venkatramana, K. Sreenivasulu, K. Sivakumar, and K. Dayananda Reddy, Int. J. Sci. Eng. Res. 4, 1795 (2013).

    Google Scholar 

  10. A. Ali, F. Nabi, F. A. Itoo, and S. Tasneem, J. Mol. Liq. 143, 141 (2008).

    Article  CAS  Google Scholar 

  11. Homendra Naorem and S. K. Suri, Can. J. Chem. 67, 1672 (1989).

    Article  CAS  Google Scholar 

  12. K. Ramanjaneyulu and A. Krishnaiah, Fluid Phase Equlib. 40, 311 (1988).

    Article  CAS  Google Scholar 

  13. K. N. Surendranath and A. Krishnaiah, Thermochim. Acta 157, 83 (1990).

    Article  CAS  Google Scholar 

  14. B. J. Lakshmi, M. Gowrisankar, C. Rambabu, and D. Ramachandran, Korean J. Chem. Eng. 31, 881 (2014).

    Article  CAS  Google Scholar 

  15. P. S. Nikam and S. J. Kharat, J. Chem. Eng. Data 48, 1202 (2003).

    Article  CAS  Google Scholar 

  16. N. V. Sastry, N. J. Jain, A. George, and P. Bahadur, Fluid Phase Equilib. 163, 275 (1999).

    Article  CAS  Google Scholar 

  17. R. S. Ramadevi, P. Venkatesu, and M. V. P. Rao, J. Chem. Eng. Data 41, 479 (1996).

    Article  CAS  Google Scholar 

  18. N. V. Sastry, R. R. Thakor, and M. C. Patel, J. Mol. Liq. 144, 13 (2009).

    Article  CAS  Google Scholar 

  19. S. S. Joshi, T. M. Aminabhavi, and R. H. Balundgi, J. Chem. Eng. Data 35, 185 (1990).

    Article  CAS  Google Scholar 

  20. E. Ruiz, J. S. Urieta, J. Santafe, and C. Gutierrez, Bull. Soc. Chim. Fr. 3, 304 (1989).

    Google Scholar 

  21. D. D. Deshpande, I. G. Bhatgadde, S. Oswal, and C. S. Prabhu, J. Chem. Eng. Data 16, 468 (1971).

    Article  Google Scholar 

  22. K. Ramanjaneyulu, K. N. Surendranath, and A. Krishnaiah, Fluid Phase Equilib. 44, 357 (1989).

    Article  CAS  Google Scholar 

  23. J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds (Elsevier, Amsterdam, 1950), Vol. 2.

    Google Scholar 

  24. R. K. Shukla, Atul Kumar, N. Awasthi, U. Srivastava, and K. Srivastava, Arab. J. Chem. 82 (2014). doi 10.1016/j.arabjc.2014.07.013

  25. P. Goralski and H. Piekarski, J. Chem. Eng. Data 52, 655 (2007).

    Article  CAS  Google Scholar 

  26. M. Zábranský, Jr., and V. Růžıčka, J. Phys. Chem. Ref. Data 33, 1071 (2004).

    Article  CAS  Google Scholar 

  27. N. A. Lange, Handbook of Chemistry, 9th ed. (McGraw Hill, Sandusky, Ohio, 1956).

    Google Scholar 

  28. H. Wang, Y. Wu, and W. Dong, J. Chem. Thermodyn. 37, 866 (2005).

    Article  CAS  Google Scholar 

  29. L. Prabhavathi, K. Sivakumar, P. Venkateswarlu, and G. K. Raman, Phys. Chem. Liq. 38, 705 (2003).

    Article  Google Scholar 

  30. D. Shukla, Sh. Singh, Sh. Parveen, M. Gupta, and J. P. Shukla, Int. J. Thermophys. 29, 1376 (2008).

    Article  CAS  Google Scholar 

  31. M. Venkatesh, L. S. Manjeshwar, M. Sairam, and T. M. Aminabhavi, J. Chem. Thermodyn. 38, 1062 (2006).

    Article  CAS  Google Scholar 

  32. CRC Handbook of Physics and Chemistry, 78th ed. (CRC, Boca Raton, FL, 1997).

  33. S. Singh, V. K. Rattan, S. Kapoor, R. Kumar, and A. Rampal, J. Chem. Eng. Data 50, 288 (2005).

    Article  CAS  Google Scholar 

  34. K. Govindan and G. Ravichandran, J. Solut. Chem. 25, 75 (1996).

    Article  CAS  Google Scholar 

  35. S. S. Joshi and T. M. Aminabhavi, Fluid Phase Equilib. 60, 319 (1990).

    Article  CAS  Google Scholar 

  36. P. Jeevanandham, S. Kumar, and P. Periyasamy, J. Mol. Liq. 188, 203 (2013).

    Article  CAS  Google Scholar 

  37. V. Pandiyan, S. L. Oswal, N. I. Malek, and P. Vasantharani, Thermochim. Acta 524, 140 (2011).

    CAS  Google Scholar 

  38. A. Ansoa, R. Garriga, S. Martoanez, P. Pearez, and M. Gracia, J. Chem. Eng. Data 50, 1478 (2005).

    Article  CAS  Google Scholar 

  39. G. C. Benson and O. Kiyohara, J. Chem. Thermodyn. 11, 1061 (1979).

    Article  CAS  Google Scholar 

  40. O. Redlich and A. T. Kister, J. Ind. Eng. Chem. 40, 345 (1948).

    Article  Google Scholar 

  41. M. Das and M. N. Roy, Phys. Chem. Liq. 44, 663 (2006).

    Article  CAS  Google Scholar 

  42. C. Yang, P. Ma, and Q. Zhou, J. Chem. Eng. Data 49, 881 (2004).

    Article  CAS  Google Scholar 

  43. T. Jayalakshmi and K. S. Reddy, Can. J. Chem. 63, 2824 (1985).

    Article  CAS  Google Scholar 

  44. R. S. Mulliken and W. B. Person, Molecular Complexes (Wiley-Interscience, New York, 1969).

    Google Scholar 

  45. R. Acharya, Paikra, and G. C. Mohanty, Indian J. Pure Appl. Phys. 41, 855 (2003).

    CAS  Google Scholar 

  46. A. Ali, A. K. Nain, D. Chand, and B. Lal, Indian J. Chem. A 44, 511 (2005).

    Google Scholar 

  47. N. V. Sastry and S. R. Patel, Int. J. Thermophys. 21, 1153 (2000).

    Article  CAS  Google Scholar 

  48. A. P. Jaganath Dixit, J. Chem. Eng. Data 28, 190 (1983).

    Article  Google Scholar 

  49. F. Comelli, S. Ottani, R. Francesconi, and C. Castellari, J. Chem. Eng. Data 47, 93 (2002).

    Article  CAS  Google Scholar 

  50. P. Jain and M. Singh, J. Chem. Eng. Data 49, 1214 (2004).

    Article  CAS  Google Scholar 

  51. M. Das and M. N. Roy, Phys. Chem. Liq. 44, 663 (2006).

    Article  CAS  Google Scholar 

  52. P. Brocos, A. Pineiro, R. Bravo, and A. Amigo, Phys. Chem. Chem. Phys. 5, 550 (2003).

    Article  CAS  Google Scholar 

  53. A. Pineiro, P. Brocos, A. Amigo, M. Pintos, and R. Bravo, Phys. Chem. Liq. 38, 251 (2000).

    Article  CAS  Google Scholar 

  54. T. M. Reed and T. E Taylor, J. Phys. Chem. 63, 58 (1959).

    Article  CAS  Google Scholar 

  55. R. Palepu, J. Oliver, and B. Mackinnom, Can. J. Chem. 63, 1024 (1985).

    Article  CAS  Google Scholar 

  56. H. Wang, W. Liu, and J. Huang, J. Chem. Thermodyn. 36, 743 (2004).

    Article  CAS  Google Scholar 

  57. C. Castellari, R. Francesconi, F. Comelli, and S. Ottani, J. Chem. Eng. Data 47, 1197 (2002).

    Article  CAS  Google Scholar 

  58. L. Hall, Phys. Rev. 73, 775 (1948).

    Article  CAS  Google Scholar 

  59. B. Hawrylak, K. Gracie, and R. Palepu, J. Solut. Chem. 27, 17 (1998).

    Article  CAS  Google Scholar 

  60. A. Cipiciani, G. Onori, and G. Savelli, Chem. Phys. Lett. 143, 505 (1988).

    Article  CAS  Google Scholar 

  61. H. T. Van and D. Patterson, J. Solut. Chem. 11, 793 (1982).

    Article  Google Scholar 

  62. D. Patterson and G. Delma, Discuss Faraday Soc. 49, 98 (1970).

    Article  Google Scholar 

  63. I. Prigogine, The Molecular Theory of Solution (North-Holland, Amsterdam, 1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Ubagaramary, I. V. Muthu Vijayan Enoch, M. Gowrisankar or S. Mullainathan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ubagaramary, D., Enoch, I.V., Gowrisankar, M. et al. Molecular Interactions in Binary Mixtures of 2-Cholroaniline and Monosubstituted Benzene Derivatives at Various Temperatures. Russ. J. Phys. Chem. 92, 2665–2678 (2018). https://doi.org/10.1134/S0036024418130319

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418130319

Keywords:

Navigation