Skip to main content
Log in

Trimeric Surfactant Modified Montmorillonite Immobilized in Alginate Beads: An Efficient Adsorbent for Removal of Cu2+ and Methyl Orange from Aqueous Solution

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Trimeric surfactant modified montmorillonite immobilized in alginate beads (CA/3RenQ-Mt) sorbent was synthesized to simultaneously remove Cu2+ and methyl orange (MO) from aqueous solution. The CA/3RenQ-Mt was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG), zeta potential analysis and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis. The adsorption of Cu2+ and MO by CA/3RenQ-Mt was studied by the operational variables including contact time, pH and temperature. The results showed CA/3RenQ-Mt exhibited higher affinity to both Cu2+ and MO compared to sodium montmorillonite (Mt-Na), trimeric surfactant modified montmorillonite (3RenQ-Mt) or calcium alginate (CA). The pseudo-first-order kinetic model and Langmuir isotherm model were found to describe the MO adsorption well; the pseudo-second-order kinetic model and Freundlich isotherm model fitted well with the Cu2+ adsorption. The adsorption of MO onto CA/3RenQ-Mt is an endothermic spontaneous process, and ion-exchange was the dominant adsorption mechanism. Accordingly, the adsorption of Cu2+ on CA/3RenQ-Mt involved endothermic spontaneous chemical adsorption by means of coordination/chelation between Cu2+ and the oxygen atoms of carboxyl and hydroxyl groups of alginate. In general, CA/3RenQ-Mt can be applied as multifunctional adsorbent to remove heavy ions and anion dyes from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. K. U. Mohammad, Chem. Eng. J. 308, 438 (2017).

    Article  CAS  Google Scholar 

  2. E. Abdelhahi, B. Michel, O. S. Mohamed, et al., Chem. Eng. J. 178, 168 (2011).

    Article  CAS  Google Scholar 

  3. S. Ahmatmet, S. Gungor, T. Mustafa, Ind. Eng. Chem. Res. 51, 6877 (2012).

    Article  CAS  Google Scholar 

  4. H. D. Mohammad, S. Daryoush, A. Imran, et al., J. Mol. Liq. 215, 671 (2016).

    Article  CAS  Google Scholar 

  5. R. Vincent, B. Agnes, S. Jean-Michel, et al., J. Hazard. Mater. 178, 434 (2010).

    Article  CAS  Google Scholar 

  6. O. H. Kwon, J. O. Kim, D. W. Cho, et al., Chemosphere 160, 126 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. W. H. Luo, H. Tsuyoshi, and S. Keiko, Appl. Surf. Sci. 123, 29 (2016).

    CAS  Google Scholar 

  8. G. H. Xue, M. L. Gao, Z. Gu, et al., Chem. Eng. J. 218, 223 (2013).

    Article  CAS  Google Scholar 

  9. C. Chen, H. B. Liu, T. H. Chen, et al., Appl. Clay Sci. 118, 239 (2015).

    Article  CAS  Google Scholar 

  10. S. Zhang, J. Yang, X. Xin, et al., Environ. Prog. Sustain. 34, 39 (2015).

    Article  CAS  Google Scholar 

  11. Y. G. Wang, L. H. Hua, G. Y. Zhang, et al., Colloid Interface Sci. 494, 380 (2017).

    Article  CAS  Google Scholar 

  12. F. Wang, X. W. Lu, and X. Y. Li, J. Hazard. Mater. 308, 75 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. S. H. Lin and R. S. Juang, J. Hazard. Mater. B 92, 315 (2002).

    Article  CAS  Google Scholar 

  14. L. Y. Ma, Q. Z. Chen, J. X. Zhu, et al., Chem. Eng. J. 283, 880 (2016).

    Article  CAS  Google Scholar 

  15. B. J. Hua and H. J. Luo, Appl. Surf. Sci. 257, 769 (2010).

    Article  CAS  Google Scholar 

  16. V. V. Goncharuk, L. N. Puzyrnaya, G. N. Pshinko, et al., J. Water Chem. Technol. 33, 147 (2011).

    Article  Google Scholar 

  17. X. B. Xing, P. H. Chang, G. C. Lv, et al., J. Taiwan Inst. Chem. E 59, 237 (2016).

    Article  CAS  Google Scholar 

  18. Y. Q. Liang and H Li, J. Mol. Liq. 227, 139 (2017).

    Article  CAS  Google Scholar 

  19. V. D. Maria, M. L. Maria, and S. D. Ecaterina, React. Funct. Polym. 93, 77 (2015).

    Article  CAS  Google Scholar 

  20. T. K. Havva, Int. J. Biol. Macromol. 94, 202 (2017).

    Article  CAS  Google Scholar 

  21. Y. F. Pan, P. X. Cai, F. F. Madjid, et al., Appl. Surf. Sci. 385, 333 (2016). http://www.sciencedirect.com/science/article/pii/S016943321631131X.

    Article  CAS  Google Scholar 

  22. S. P. Santoso, L. Laysra, J. N. Putro, et al., J. Mol. Liq. 233, 29 (2017).

    Article  CAS  Google Scholar 

  23. L. Aguero, Z. S. Dionisio, P. Luis, et al., Carbohydr. Polym. 168, 32 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. S. C. Jang, S. M. Kang, Y. Haldorai, et al., Sci. Rep. 6, 38384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. K. Papageorgiou, F. K. Katsaros, E. P. Kouvelos, et al., J. Hazard. Mater. 137, 1765 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. D. Nassima, B. Mokhtar, C. Nacer-Eddine, et al., Int. J. Biol. Macromol. 92, 1277 (2016).

    Article  CAS  Google Scholar 

  27. T. Lu, T. Xiang, X. L. Huang, et al., Carbohyd. Polym. 133, 587 (2015).

    Article  CAS  Google Scholar 

  28. T. Yoshimura, H. Yoshida, A. Ohno, et al., J. Colloid Interface Sci. 267, 167 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. S. F. Lim, Y. M. Zheng, S. W. Zou, et al., Environ. Sci. Technol. 42, 2551 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. X. Sun, J. H. Chen, Z. B. Su, et al., Chem. Eng. J. 211–212, 1 (2016).

    Article  CAS  Google Scholar 

  31. M. Rola and C. Detellier, Materials 6, 5199 (2013).

    Article  CAS  Google Scholar 

  32. Z. Q. Wang, Y. G. Huang, M. Wang, et al., J. Environ. Chem. Eng. 4, 3185 (2016).

    Article  CAS  Google Scholar 

  33. Z. Qi, Q. Gao, W. J. Luo, et al., Colloid. Surf. A 470, 248 (2015).

    Article  CAS  Google Scholar 

  34. Q. S. Zhou, X. Y. Lin, B. Li, et al., Chem. Eng. J. 256, 306 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Chinese Ministry of Education through a National Undergraduate Training Programs for Innovation and Entrepreneurship (201610122004), the Natural Science Foundation of Shanxi Province (201701D121034), the Fund for Shanxi Key Subjects Construction, and Support Plan for Innovative Research Team of Changzhi University, Science and Technology Innovation Doctoral Research Fund of Shanxi Agricultural University (no. 2015ZZ03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Q. Liang or Y. Li.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, S.P., Liang, Y.Q. et al. Trimeric Surfactant Modified Montmorillonite Immobilized in Alginate Beads: An Efficient Adsorbent for Removal of Cu2+ and Methyl Orange from Aqueous Solution. Russ. J. Phys. Chem. 92, 2802–2810 (2018). https://doi.org/10.1134/S0036024418130186

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418130186

Keywords:

Navigation