Skip to main content
Log in

Reconstruction of STO-3G Family Basis Set for the Accurate Calculation of Magnetic Properties

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The new approach for the determination of orbital exponents and contracted coefficients for STO-3G family basis sets has been proposed. Calculations of the necessary coefficients have been performed using Mathcad program package with Minerr solving block. This approach has been used to perform the approximation of the Slater-type orbital (STO) by three Gaussian-type orbitals (GTO). The performance of such modified basis sets has been tested for the calculations of atomic energies using STO(0)-3G basis set and for nuclear magnetic shielding tensors using STO(1M)-3G basis set. The obtained atomic energies are characterized by lower values than those calculated using old parameters. The results for 1H and 13C chemical shifts calculations demonstrate better agreement with the experimental data compared to the data obtained using standard basis sets, such as 6-311G (2d, p), cc-pVDZ and pcS-1. Required time of calculations using the basic set suggested by us is less than the time spent on the calculation using standard basic sets with a similar number of basis functions. Physically adapted and at the same time small by size basic set STO(1M)-3G is perspective for the calculation of magnetic properties of big molecular systems. Proton and 13C chemical shifts have been calculated for molecules of adenosine monophosphate (AMP) and flavinadenine dinucleotide (FAD), that play an important role in various biological processes. For both molecules the results of the calculation have shown values close to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. E. J. Baerends, D. E. Ellis, and P. Ros, Chem. Phys. 2, 41 (1973). doi 10.1016/0301-0104(73)80059-X

    Article  CAS  Google Scholar 

  2. C. Fonseca Guerra, J. G. Snijders, G. te Velde, and E. J. Baerends, Theor. Chem. Acc. 99, 391 (1998). doi 10.1007/s002140050353

    Google Scholar 

  3. G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comput. Chem. 22, 931 (2001). doi 10.1002/jcc.1056

    Article  CAS  Google Scholar 

  4. T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989). doi 10.1063/1.456153

    Article  CAS  Google Scholar 

  5. D. Feller, K. A. Peterson, and J. Grant Hill, J. Chem. Phys. 135, 044102 (2011). doi 10.1063/1.3613639

    Article  CAS  PubMed  Google Scholar 

  6. K. A. Peterson and T. H. Dunning, Jr., J. Chem. Phys. 117, 10548 (2002). doi 10.1063/1.1520138

    Article  CAS  Google Scholar 

  7. B. P. Prascher, D. E. Woon, K. A. Peterson, T. H. Dunning, Jr., and A. K. Wilson, Theor. Chem. Acc. 128, 69 (2011). doi 10.1007/s00214-010-0764-0

    Article  CAS  Google Scholar 

  8. A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980). doi 10.1063/1.438980

    Article  CAS  Google Scholar 

  9. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980). doi 10.1063/1.438955

    Article  CAS  Google Scholar 

  10. F. Jensen, Theor. Chem. Acc. 104, 484 (2000). doi 10.1007/s002140000174

    Article  CAS  Google Scholar 

  11. F. Jensen, J. Phys. Chem. A 111, 11198 (2007). doi 10.1021/jp068677h

    Article  CAS  PubMed  Google Scholar 

  12. F. Jensen, J. Chem. Phys. 136, 114107 (2012). doi 10.1063/1.3690460

    Article  CAS  PubMed  Google Scholar 

  13. J. M. Foster and S. F. Boys, Rev. Mod. Phys. 32, 303 (1960). doi 10.1103/RevModPhys.32.303

    Article  CAS  Google Scholar 

  14. W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys. 51, 2657 (1969). doi 10.1063/1.1672392

    Article  CAS  Google Scholar 

  15. W. J. Hehre, R. Ditchfield, R. F. Stewart, and J. A. Pople, J. Chem. Phys. 52, 2763 (1970). doi 10.1063/1.1673374

    Article  Google Scholar 

  16. W. J. Pietro, B. A. Levi, W. J. Hehre, and R. F. Stewart, Inorg. Chem. 19, 2225 (1980). doi 10.1021/ic50210a005

    Article  CAS  Google Scholar 

  17. W. J. Pietro, E. S. Blurock, R. F. Hout, Jr., W. J. Hehre, D. J. DeFrees, and R. F. Stewart, Inorg. Chem. 20, 3650 (1981). doi 10.1021/ic50225a013

    Article  CAS  Google Scholar 

  18. W. J. Pietro and W. J. Hehre, J. Comput. Chem. 4, 241 (1983). doi 10.1002/jcc.540040215

    Article  CAS  Google Scholar 

  19. B. Stewart, D. J. Hylton, and N. Ravi, J. Chem. Educ. 90, 609 (2013). doi 10.1021/ed300807y

    Article  CAS  Google Scholar 

  20. V. V Rossikhin, V. V. Kuz’menko, E. O. Voronkov, and L. I. Zaslavskaya, J. Phys. Chem. 100, 19801 (1996). doi 10.1021/jp952799k

    Article  CAS  Google Scholar 

  21. V. V Rossikhin, S. I. Okovytyy, L. I. Kasyan, E. O. Voronkov, L. K. Umrikhina, and J. Leszczynski, J. Phys. Chem. A 106, 4176 (2002). doi 10.1021/jp0139080

    Article  CAS  Google Scholar 

  22. E. Voronkov, V. Rossikhin, S. Okovytyy, A. Shatckih, V. Bolshakov, and J. Leszczynski, Int. J. Quantum Chem. 112, 2444 (2012). doi 10.1002/qua.23256

    Article  CAS  Google Scholar 

  23. K. Radula-Janik, T. Kupka, K. Ejsmont, Z. Daszkiewicz, and S. P. A. Sauer, Magn. Reson. Chem. 51, 630 (2013). doi 10.1002/mrc.3992

    Article  CAS  PubMed  Google Scholar 

  24. A. Buczek, M. Makowski, M. Jewgiński, R. Latajka, T. Kupka, and M. A. Broda, Biopolymers. 101, 28 (2014). doi 10.1002/bip.22264

    Article  CAS  PubMed  Google Scholar 

  25. T. Kupka, M. Stachów, L. Stobiński, and J. Kaminsky, J. Mol. Graph. Model. 67, 14 (2016). doi 10.1016/j.jmgm.2016.04.008

    Article  CAS  PubMed  Google Scholar 

  26. S. I. Okovytyy, E. O. Voronkov, V. V Rossikhin, O. K. Balalayev, and J. Leszczynski, J. Phys. Chem. A 108, 4930 (2004). doi 10.1021/jp0378081

    Article  CAS  Google Scholar 

  27. A. Bolotin, V. Rossikhin, and E. Voronkov, Acta Phys. Hung. 70, 299 (1991). doi 10.1007/BF03054143

    CAS  Google Scholar 

  28. Mathcad (MathSoft Inc., Cambridge, MA).

  29. V. Korobov and V. Ochkov, Chemical Kinetics with Mathcad and Maple (Springer, New York, 2011). doi 10.1007/978-3-7091-0531-3

    Book  Google Scholar 

  30. C. C. Pye and C. J. Mercer, J. Chem. Educ. 89, 1405 (2012). doi 10.1021/ed300032f

    Article  CAS  Google Scholar 

  31. C. Pisani, Quantum-Mechanical Ab-initio Calculation of the Properties of Crystalline Materials (Springer, Berlin, Heidelberg, 2012). doi 10.1007/978-3-642-61478-1

    Google Scholar 

  32. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, et al., Gaussian 09 (Gaussian Inc., Pittsburgh, PA, 2009).

    Google Scholar 

  33. S. Okovytyy, S. Kopteva, E. Voronkov, T. Sergeieva, K. Kapusta, L. Dmitrikova, and J. Leszczynski, Bull. Dnipropetr. Univ. Chem. 21, 7 (2013). doi 10.15421/081313

    Article  Google Scholar 

  34. T. Kupka, M. Stachów, E. Chelmecka, K. Pasterny, M. Stobińska, L. Stobiński, and J. Kaminsky, J. Chem. Theory Comput. 9, 4275 (2013). doi 10.1021/ct4002812

    Article  CAS  PubMed  Google Scholar 

  35. K. Kapusta, E. Voronkov, S. Okovytyy, and J. Leszczynski, Bull. Dnipropetr. Univ. Ser. Chem. 23, 8 (2015). doi 10.15421/081502

    CAS  Google Scholar 

  36. D. E. Hill, N. Vasdev, and J. P. Holland, Comput. Theor. Chem. 1051, 161 (2015). doi 10.1016/j.comptc.2014.11.007

    Article  CAS  Google Scholar 

  37. D. Vikić-Topić and L. Pejov, J. Chem. Inf. Comput. Sci. 41, 1478 (2001). doi 10.1021/ci010042m

    Article  CAS  PubMed  Google Scholar 

  38. T. Kupka, Magn. Reson. Chem. 46, 851 (2008). doi 10.1002/mrc.2270

    Article  CAS  PubMed  Google Scholar 

  39. J. M. del Campo, J. L. Gázquez, S. B. Trickey, and A. Vela, J. Chem. Phys. 136 (2012). doi 10.1063/1.3691197

  40. National Institute of Advanced Industrial Science and Technology (AIST). http://sdbs.db.aist.go.jp.

  41. Biological Magnetic Resonance Data Bank. http:// www.bmrb.wisc.edu/.

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the funding of this research by the Ministry of Education and Science of Ukraine (Project no. 0116U001520), National Science Foundation (NSF/CREST HRD-1547754) and PREM (no. DMR-1205194) grants. This work also used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation (grant no. ACI-1053575).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kapusta.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapusta, K., Voronkov, E., Okovytyy, S. et al. Reconstruction of STO-3G Family Basis Set for the Accurate Calculation of Magnetic Properties. Russ. J. Phys. Chem. 92, 2827–2834 (2018). https://doi.org/10.1134/S0036024418130174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418130174

Keywords:

Navigation