Skip to main content
Log in

Hollow Graphene-Based Microspheres Adsorbents for Removal of Gaseous Formaldehyde

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Two type of hollow graphene microspheres were investigated for the adsorption performance of gaseous formaldehyde. Hollow gently reduced graphene oxide microspheres (HgRGOS) were synthesized by using the polystyrene microspheres as sacrificial template and gently reducing graphene oxide with NH2NH2. Hollow amine modified graphene microspheres (DETA-HgRGOS) were synthesized by DETA-treatment following the before-mentioned steps. The materials were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffractometry, Fourier transform infrared and X-ray photoelectron spectroscopies. This was followed by formaldehyde adsorption tests. The results showed that HgRGOS and DETA-HgRGOS were characterized to have adsorption capacities of 24.54 and 17.18 mg/g. The amine-modified material can interacts with HCHO more easily than the material eith carboxyl and epoxy groups on the surface. The reaction mechanism was discussed according to FTIR and XPS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. Salthammer, S. Mentese, and R. Marutzky, Chem. Rev. 110, 2536 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. R. Ashmore and C. Dimitroulopoulou, Atmos. Environ. 43, 128 (2009).

    Article  CAS  Google Scholar 

  3. W. E. Luttrell, Chem. Health Safety 10, 29 (2003).

    Article  CAS  Google Scholar 

  4. Y. Zhu, H. Li, Q. Zheng, et al., J. Surf. Colloids 28, 7843 (2012).

    Article  CAS  Google Scholar 

  5. D. Paustenbach, Y. Alarie, T. Kulle, et al., J. Toxicol. Environ. Health 50, 217 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Y. Y. Maruo, T. Yamada, J. Nakamura, et al., Indoor Air 20, 486 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Y. Sekine and A. Nishimura, Atmos. Environ. 35, 2001 (2001).

    Article  CAS  Google Scholar 

  8. Y. Le, D. Guo, B. Cheng, et al., Appl. Surf. Sci. 274, 110 (2013).

    Article  CAS  Google Scholar 

  9. Q. Wen, C. Li, Z. Cai, et al., Bioresour. Technol. 102, 942 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Z. H. Cai, C. T. Li, Q. B. Wen, et al., J. Central South Univ. 42, 2156 (2011).

    CAS  Google Scholar 

  11. A. Rezaee, H. Rangkooy, A. Jonidi-Jafari, et al., Appl. Surf. Sci. 286, 235 (2013).

    Article  CAS  Google Scholar 

  12. L. Wu, Z. Qin, L. Zhang, et al., New J. Chem. 41, 7 (2017).

    Google Scholar 

  13. J. Cao, Y. Wang, P. Xiao, et al., Carbon 56, 389 (2013).

    Article  CAS  Google Scholar 

  14. J. Wang, J. Fang, F. Pan, et al., J. Biomater. Sci. Polym. Ed. 28, 337 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. W. S. Hummers, Jr. and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  16. C. M. Tseng, Y. Y. Lu, M. S. El-Aasser, et al., J. Polym. Sci., Part A 24, 2995 (1986).

    Article  CAS  Google Scholar 

  17. X. Zhu, Y. Mu, G. Jing, et al., Composite Interfaces 24, 541 (2016).

    Article  CAS  Google Scholar 

  18. W. Wang, Fujian Anal. Test. (2007).

  19. R. Bissessur, P. K. Y. Liu, and S. F. Scully, Synth. Met. 156, 1023 (2006).

    Article  CAS  Google Scholar 

  20. T. Szabó, O. Berkesi, and I. Dékány, Carbon 43, 3186 (2005).

    Article  CAS  Google Scholar 

  21. J. Sha, L. Xie, M. A. Yulu, et al., China Plast. 25, 28 (2011).

    CAS  Google Scholar 

  22. J. Wei, P. Hing, and Z. Q. Mo, Surf. Interface Anal. 28, 208 (2015).

    Article  Google Scholar 

  23. Z. Han, Z. Tang, Y. Sun, et al., Sci. Rep. 5, 16730 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. C. D. Zangmeister, Chem. Mater. 22, 19 (2010).

    Article  CAS  Google Scholar 

  25. D. R. Dreyer, S. Park, C. W. Bielawski, et al., Chem. Soc. Rev. 39, 228 (2009).

    Article  PubMed  Google Scholar 

  26. Y. C. Yue, D. J. Li, W. Ren, et al., Vacuum 89, 122 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the Hunan Province Science and Technology Project of China (2014FJ3076) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sufang Li.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian Li, Wu, S., Song, X. et al. Hollow Graphene-Based Microspheres Adsorbents for Removal of Gaseous Formaldehyde. Russ. J. Phys. Chem. 92, 2535–2541 (2018). https://doi.org/10.1134/S0036024418120488

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418120488

Keywords:

Navigation